Developmental Mismatch Across Brain Modalities in Young Children.

IF 2.4 3区 医学 Q3 NEUROSCIENCES Brain connectivity Pub Date : 2024-12-20 DOI:10.1089/brain.2024.0046
Xiangyu Long, Madison Long, Jamie Roeske, Jess E Reynolds, Catherine Lebel
{"title":"Developmental Mismatch Across Brain Modalities in Young Children.","authors":"Xiangyu Long, Madison Long, Jamie Roeske, Jess E Reynolds, Catherine Lebel","doi":"10.1089/brain.2024.0046","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Brain development during the preschool period is complex and extensive and underlies ongoing behavioral and cognitive maturation. Increasing understanding of typical brain maturation during this time is critical to early identification of atypical development and could inform treatments and interventions. Previous studies have suggested mismatches between brain structural and functional development in later childhood and adolescence. The current study aimed to delineate the developmental matches and mismatches between brain measures from multiple magnetic resonance imaging modalities in young children. <b><i>Methods:</i></b> Brain volume, cortical thickness, fractional anisotropy, cerebral blood flow (CBF), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and eigenvector centrality mapping (ECM) were included. Multi-modal neuroimages for 159 datasets from 67 typically developing preschoolers (2.0-7.6 years old) were collected and analyzed. <b><i>Results:</i></b> Functional measures (CBF, ECM, ReHo, ALFF) had similar developmental trajectories across regions, whereas development trajectories for brain volumes and cortical thickness were more heterogeneous. Furthermore, within individuals, brain volumes and cortical thickness were very good at predicting individual scans from prior longitudinal scans. <b><i>Conclusions:</i></b> These findings provide a more detailed characterization of the complex interplay of different types of brain development in the early years, laying the foundation for future studies on the impact of environmental factors and neurodevelopmental disorders on the development matches/mismatches patterns between brain areas and modalities.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0046","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Brain development during the preschool period is complex and extensive and underlies ongoing behavioral and cognitive maturation. Increasing understanding of typical brain maturation during this time is critical to early identification of atypical development and could inform treatments and interventions. Previous studies have suggested mismatches between brain structural and functional development in later childhood and adolescence. The current study aimed to delineate the developmental matches and mismatches between brain measures from multiple magnetic resonance imaging modalities in young children. Methods: Brain volume, cortical thickness, fractional anisotropy, cerebral blood flow (CBF), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and eigenvector centrality mapping (ECM) were included. Multi-modal neuroimages for 159 datasets from 67 typically developing preschoolers (2.0-7.6 years old) were collected and analyzed. Results: Functional measures (CBF, ECM, ReHo, ALFF) had similar developmental trajectories across regions, whereas development trajectories for brain volumes and cortical thickness were more heterogeneous. Furthermore, within individuals, brain volumes and cortical thickness were very good at predicting individual scans from prior longitudinal scans. Conclusions: These findings provide a more detailed characterization of the complex interplay of different types of brain development in the early years, laying the foundation for future studies on the impact of environmental factors and neurodevelopmental disorders on the development matches/mismatches patterns between brain areas and modalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
幼儿脑发育模式的不匹配。
背景:学前时期的大脑发育是复杂而广泛的,是持续的行为和认知成熟的基础。在此期间增加对典型大脑成熟的了解对于早期识别非典型发育至关重要,并且可以为治疗和干预提供信息。先前的研究表明,在儿童后期和青少年时期,大脑结构和功能发育不匹配。目前的研究旨在描述幼儿多种磁共振成像方式的大脑测量之间的发育匹配和不匹配。方法:包括脑容量、皮质厚度、分数各向异性、脑血流量(CBF)、低频波动幅度(ALFF)、区域均匀性(ReHo)和特征向量中心性映射(ECM)。对67名典型发育学龄前儿童(2.0 ~ 7.6岁)159个数据集的多模态神经图像进行了收集和分析。结果:功能测量(CBF, ECM, ReHo, ALFF)在不同区域具有相似的发展轨迹,而脑体积和皮层厚度的发展轨迹则更为异质性。此外,在个体中,脑容量和皮质厚度可以很好地预测先前纵向扫描的个体扫描。结论:这些发现为早期不同类型大脑发育的复杂相互作用提供了更详细的表征,为未来研究环境因素和神经发育障碍对脑区和模式之间发育匹配/不匹配模式的影响奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
期刊最新文献
Developmental Mismatch Across Brain Modalities in Young Children. Distinct Neural Connectivity Patterns During Music Listening and Imagination: An Electroencephalography Study. The Effect of Modular Degeneracy on Neuroimaging Data. Altered Functional Coupling of the Bed Nucleus of the Stria Terminalis and Amygdala in Spider Phobic Fear. Connectivity Changes Following Episodic Future Thinking in Alcohol Use Disorder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1