Relationships between protein degradation, cellular senescence, and organismal aging.

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of biochemistry Pub Date : 2024-04-29 DOI:10.1093/jb/mvae016
Jun Hamazaki, Shigeo Murata
{"title":"Relationships between protein degradation, cellular senescence, and organismal aging.","authors":"Jun Hamazaki, Shigeo Murata","doi":"10.1093/jb/mvae016","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":"473-480"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11058314/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质降解、细胞衰老和机体衰老之间的关系
衰老是许多疾病的主要风险因素。最近的研究表明,与年龄有关的蛋白稳态破坏会导致异常蛋白质的积累,而泛素-蛋白酶体途径和自噬-溶酶体途径这两大细胞内蛋白水解途径的功能障碍在很大程度上导致了这一过程。相反,有研究表明,激活这些蛋白水解途径可能有助于延长寿命和抑制病理状态,使其成为一种很有前景的抗衰老干预措施。本综述概述了细胞内蛋白质降解在衰老过程中的重要作用,并总结了蛋白稳态的破坏是如何参与老年相关疾病的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
期刊最新文献
Maintenance of the Golgi Ribbon Structure by the KASH Protein Jaw1. Cellular senescence: mechanisms and relevance to cancer and aging. Bcl2l12, a novel protein interacting with Arf6, triggers Schwann cell differentiation program. Dietary methionine functions in proliferative zone maintenance and egg production via sams-1 in Caenorhabditis elegans. Variations associated with neurodevelopmental disorders affect ARF1 function and cortical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1