{"title":"On the Relation Between Leg Motion Rate and Speech Tempo During Submaximal Cycling Exercise.","authors":"Heather Weston, Wim Pouw, Susanne Fuchs","doi":"10.1044/2023_JSLHR-23-00178","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study investigated whether temporal coupling was present between lower limb motion rate and different speech tempi during different exercise intensities. We hypothesized that increased physical workload would increase cycling rate and that this could account for previous findings of increased speech tempo during exercise. We also investigated whether the choice of speech task (read vs. spontaneous speech) affected results.</p><p><strong>Method: </strong>Forty-eight women who were ages 18-35 years participated. A within-participant design was used with fixed-order physical workload and counterbalanced speech task conditions. Motion capture and acoustic data were collected during exercise and at rest. Speech tempo was assessed using the amplitude envelope and two derived intrinsic mode functions that approximated syllable-like and footlike oscillations in the speech signal. Analyses were conducted with linear mixed-effects models.</p><p><strong>Results: </strong>No direct entrainment between leg cycling rate and speech rate was observed. Leg cycling rate significantly increased from low to moderate workload for both speech tasks. All measures of speech tempo decreased when participants changed from rest to either low or moderate workload.</p><p><strong>Conclusions: </strong>Speech tempo does not show temporal coupling with the rate of self-generated leg motion at group level, which highlights the need to investigate potential faster scale momentary coupling. The unexpected finding that speech tempo decreases with increased physical workload may be explained by multiple mental and physical factors that are more diverse and individual than anticipated. The implication for real-world contexts is that even light physical activity-functionally equivalent to walking-may impact speech tempo.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":" ","pages":"3931-3946"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2023_JSLHR-23-00178","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study investigated whether temporal coupling was present between lower limb motion rate and different speech tempi during different exercise intensities. We hypothesized that increased physical workload would increase cycling rate and that this could account for previous findings of increased speech tempo during exercise. We also investigated whether the choice of speech task (read vs. spontaneous speech) affected results.
Method: Forty-eight women who were ages 18-35 years participated. A within-participant design was used with fixed-order physical workload and counterbalanced speech task conditions. Motion capture and acoustic data were collected during exercise and at rest. Speech tempo was assessed using the amplitude envelope and two derived intrinsic mode functions that approximated syllable-like and footlike oscillations in the speech signal. Analyses were conducted with linear mixed-effects models.
Results: No direct entrainment between leg cycling rate and speech rate was observed. Leg cycling rate significantly increased from low to moderate workload for both speech tasks. All measures of speech tempo decreased when participants changed from rest to either low or moderate workload.
Conclusions: Speech tempo does not show temporal coupling with the rate of self-generated leg motion at group level, which highlights the need to investigate potential faster scale momentary coupling. The unexpected finding that speech tempo decreases with increased physical workload may be explained by multiple mental and physical factors that are more diverse and individual than anticipated. The implication for real-world contexts is that even light physical activity-functionally equivalent to walking-may impact speech tempo.
期刊介绍:
Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work.
Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.