Motivations for Artificial Intelligence, for Deep Learning, for ALife: Mortality and Existential Risk

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2024-02-01 DOI:10.1162/artl_a_00427
Inman Harvey
{"title":"Motivations for Artificial Intelligence, for Deep Learning, for ALife: Mortality and Existential Risk","authors":"Inman Harvey","doi":"10.1162/artl_a_00427","DOIUrl":null,"url":null,"abstract":"We survey the general trajectory of artificial intelligence (AI) over the last century, in the context of influences from Artificial Life. With a broad brush, we can divide technical approaches to solving AI problems into two camps: GOFAIstic (or computationally inspired) or cybernetic (or ALife inspired). The latter approach has enabled advances in deep learning and the astonishing AI advances we see today—bringing immense benefits but also societal risks. There is a similar divide, regrettably unrecognized, over the very way that such AI problems have been framed. To date, this has been overwhelmingly GOFAIstic, meaning that tools for humans to use have been developed; they have no agency or motivations of their own. We explore the implications of this for concerns about existential risk for humans of the “robots taking over.” The risks may be blamed exclusively on human users—the robots could not care less.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"30 1","pages":"48-64"},"PeriodicalIF":1.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10541965/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We survey the general trajectory of artificial intelligence (AI) over the last century, in the context of influences from Artificial Life. With a broad brush, we can divide technical approaches to solving AI problems into two camps: GOFAIstic (or computationally inspired) or cybernetic (or ALife inspired). The latter approach has enabled advances in deep learning and the astonishing AI advances we see today—bringing immense benefits but also societal risks. There is a similar divide, regrettably unrecognized, over the very way that such AI problems have been framed. To date, this has been overwhelmingly GOFAIstic, meaning that tools for humans to use have been developed; they have no agency or motivations of their own. We explore the implications of this for concerns about existential risk for humans of the “robots taking over.” The risks may be blamed exclusively on human users—the robots could not care less.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能、深度学习和 ALife 的动机:死亡率与生存风险
在人工生命的影响下,我们回顾了上个世纪人工智能(AI)的总体发展轨迹。概括地说,我们可以把解决人工智能问题的技术方法分为两大阵营:人工智能(GOFAIstic)(或计算启发)或控制论(Cybernetic)(或人工生命启发)。后一种方法促成了深度学习的进步和我们今天看到的人工智能的惊人发展,带来了巨大的利益,但也带来了社会风险。令人遗憾的是,在此类人工智能问题的解决方式上也存在着类似的分歧,但这种分歧却未得到承认。迄今为止,人工智能问题的框架绝大多数都是 "全球人工智能 "式的,即开发出供人类使用的工具;这些工具没有自己的能动性或动机。我们将探讨这一点对 "机器人接管 "人类生存风险的影响。"这些风险可能完全归咎于人类用户--机器人根本不在乎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1