Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2024-02-13 DOI:10.1038/s41929-023-01102-3
Ruoyang Liu, Yongzhi Chen, Hongde Yu, Miroslav Položij, Yuanyuan Guo, Tze Chien Sum, Thomas Heine, Donglin Jiang
{"title":"Linkage-engineered donor–acceptor covalent organic frameworks for optimal photosynthesis of hydrogen peroxide from water and air","authors":"Ruoyang Liu, Yongzhi Chen, Hongde Yu, Miroslav Položij, Yuanyuan Guo, Tze Chien Sum, Thomas Heine, Donglin Jiang","doi":"10.1038/s41929-023-01102-3","DOIUrl":null,"url":null,"abstract":"Charge transfer and mass transport to catalytic sites are critical factors in photocatalysis. However, achieving both simultaneously is challenging due to inherent trade-offs and interdependencies. Here we develop a microporous covalent organic framework featuring dense donor–acceptor lattices with engineered linkages. The donor–acceptor columnar π-arrays function as charge supply chains and as abundant water oxidation and oxygen reduction centres, while the one-dimensional microporous channels lined with rationally integrated oxygen atoms function as aligned conduits for instant water and oxygen delivery to the catalytic sites. This porous catalyst promotes photosynthesis with water and air to produce H2O2, combining a high production rate, efficiency and turnover frequency. This framework operates under visible light without the need of metal co-catalysts and sacrificial reagents, exhibits an apparent quantum efficiency of 17.5% at 420 nm in batch reactors and enables continuous, stable and clean H2O2 production in flow reactors. Photocatalytic H2O2 production from water and air is limited by the availability of these substrates and charge carriers at the catalytic sites. Here a donor–acceptor covalent organic framework acts as a supply chain for the delivery of charge, water and oxygen, resulting in 17.5% quantum efficiency under visible light irradiation.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 2","pages":"195-206"},"PeriodicalIF":42.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-023-01102-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Charge transfer and mass transport to catalytic sites are critical factors in photocatalysis. However, achieving both simultaneously is challenging due to inherent trade-offs and interdependencies. Here we develop a microporous covalent organic framework featuring dense donor–acceptor lattices with engineered linkages. The donor–acceptor columnar π-arrays function as charge supply chains and as abundant water oxidation and oxygen reduction centres, while the one-dimensional microporous channels lined with rationally integrated oxygen atoms function as aligned conduits for instant water and oxygen delivery to the catalytic sites. This porous catalyst promotes photosynthesis with water and air to produce H2O2, combining a high production rate, efficiency and turnover frequency. This framework operates under visible light without the need of metal co-catalysts and sacrificial reagents, exhibits an apparent quantum efficiency of 17.5% at 420 nm in batch reactors and enables continuous, stable and clean H2O2 production in flow reactors. Photocatalytic H2O2 production from water and air is limited by the availability of these substrates and charge carriers at the catalytic sites. Here a donor–acceptor covalent organic framework acts as a supply chain for the delivery of charge, water and oxygen, resulting in 17.5% quantum efficiency under visible light irradiation.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于优化水和空气中过氧化氢光合作用的连接工程供体-受体共价有机框架
催化位点的电荷转移和质量传输是光催化的关键因素。然而,由于固有的权衡和相互依存关系,同时实现这两项目标具有挑战性。在此,我们开发了一种微孔共价有机框架,其特点是具有工程连接的致密供体-受体晶格。供体-受体柱状π阵列既是电荷供应链,又是丰富的水氧化中心和氧还原中心,而内衬有合理整合氧原子的一维微孔通道则是将水和氧即时输送到催化位点的排列管道。这种多孔催化剂能促进水和空气的光合作用,产生 H2O2,具有生产率高、效率高和周转频率高的特点。这种框架可在可见光下运行,无需金属助催化剂和牺牲试剂,在批量反应器中,420 纳米波长下的表观量子效率为 17.5%,在流动反应器中,可实现连续、稳定和清洁的 H2O2 生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Publisher Correction: Parahydrogen-enhanced magnetic resonance identification of intermediates in [Fe]-hydrogenase catalysis Alkali metal cations act as homogeneous cocatalysts for the oxygen reduction reaction in aqueous electrolytes Polymer-decorated bacteria for cascade catalysis 1,3-Butadiene formation through selective acetylene electrolysis on partially oxidized copper [Fe]-hydrogenase intermediates revealed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1