A review on statistical and machine learning competing risks methods

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biometrical Journal Pub Date : 2024-02-13 DOI:10.1002/bimj.202300060
Karla Monterrubio-Gómez, Nathan Constantine-Cooke, Catalina A. Vallejos
{"title":"A review on statistical and machine learning competing risks methods","authors":"Karla Monterrubio-Gómez,&nbsp;Nathan Constantine-Cooke,&nbsp;Catalina A. Vallejos","doi":"10.1002/bimj.202300060","DOIUrl":null,"url":null,"abstract":"<p>When modeling competing risks (CR) survival data, several techniques have been proposed in both the statistical and machine learning literature. State-of-the-art methods have extended classical approaches with more flexible assumptions that can improve predictive performance, allow high-dimensional data and missing values, among others. Despite this, modern approaches have not been widely employed in applied settings. This article aims to aid the uptake of such methods by providing a condensed compendium of CR survival methods with a unified notation and interpretation across approaches. We highlight available software and, when possible, demonstrate their usage via reproducible R vignettes. Moreover, we discuss two major concerns that can affect benchmark studies in this context: the choice of performance metrics and reproducibility.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.202300060","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300060","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

When modeling competing risks (CR) survival data, several techniques have been proposed in both the statistical and machine learning literature. State-of-the-art methods have extended classical approaches with more flexible assumptions that can improve predictive performance, allow high-dimensional data and missing values, among others. Despite this, modern approaches have not been widely employed in applied settings. This article aims to aid the uptake of such methods by providing a condensed compendium of CR survival methods with a unified notation and interpretation across approaches. We highlight available software and, when possible, demonstrate their usage via reproducible R vignettes. Moreover, we discuss two major concerns that can affect benchmark studies in this context: the choice of performance metrics and reproducibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统计和机器学习竞争风险方法综述。
在对竞争风险(CR)生存数据建模时,统计和机器学习文献中都提出了几种技术。最先进的方法对经典方法进行了扩展,采用了更灵活的假设,可以提高预测性能,允许高维数据和缺失值等。尽管如此,现代方法尚未在应用环境中得到广泛应用。本文旨在通过提供一份简明的 CR 生存方法简编,对各种方法进行统一的符号和解释,从而帮助这些方法的应用。我们重点介绍了可用的软件,并在可能的情况下通过可重现的 R 小节演示了这些软件的用法。此外,我们还讨论了在这种情况下可能影响基准研究的两个主要问题:性能指标的选择和可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
期刊最新文献
A Preplanned Multi-Stage Platform Trial for Discovering Multiple Superior Treatments With Control of FWER and Power. Developing and Comparing Four Families of Bayesian Network Autocorrelation Models for Binary Outcomes: Estimating Peer Effects Involving Adoption of Medical Technologies. Sensitivity Analysis for Effects of Multiple Exposures in the Presence of Unmeasured Confounding. Quantification of Difference in Nonselectivity Between In Vitro Diagnostic Medical Devices. Investigating a Domain Adaptation Approach for Integrating Different Measurement Instruments in a Longitudinal Clinical Registry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1