Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models.

IF 5.3 3区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Multivariate Behavioral Research Pub Date : 2024-03-01 Epub Date: 2024-02-15 DOI:10.1080/00273171.2023.2283634
Madhurbain Singh, Brad Verhulst, Philip Vinh, Yi Daniel Zhou, Luis F S Castro-de-Araujo, Jouke-Jan Hottenga, René Pool, Eco J C de Geus, Jacqueline M Vink, Dorret I Boomsma, Hermine H M Maes, Conor V Dolan, Michael C Neale
{"title":"Using Instrumental Variables to Measure Causation over Time in Cross-Lagged Panel Models.","authors":"Madhurbain Singh, Brad Verhulst, Philip Vinh, Yi Daniel Zhou, Luis F S Castro-de-Araujo, Jouke-Jan Hottenga, René Pool, Eco J C de Geus, Jacqueline M Vink, Dorret I Boomsma, Hermine H M Maes, Conor V Dolan, Michael C Neale","doi":"10.1080/00273171.2023.2283634","DOIUrl":null,"url":null,"abstract":"<p><p>Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., \"distal\") effects and the bidirectional cross-sectional (i.e., \"proximal\") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11014768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2023.2283634","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-lagged panel models (CLPMs) are commonly used to estimate causal influences between two variables with repeated assessments. The lagged effects in a CLPM depend on the time interval between assessments, eventually becoming undetectable at longer intervals. To address this limitation, we incorporate instrumental variables (IVs) into the CLPM with two study waves and two variables. Doing so enables estimation of both the lagged (i.e., "distal") effects and the bidirectional cross-sectional (i.e., "proximal") effects at each wave. The distal effects reflect Granger-causal influences across time, which decay with increasing time intervals. The proximal effects capture causal influences that accrue over time and can help infer causality when the distal effects become undetectable at longer intervals. Significant proximal effects, with a negligible distal effect, would imply that the time interval is too long to estimate a lagged effect at that time interval using the standard CLPM. Through simulations and an empirical application, we demonstrate the impact of time intervals on causal inference in the CLPM and present modeling strategies to detect causal influences regardless of the time interval in a study. Furthermore, to motivate empirical applications of the proposed model, we highlight the utility and limitations of using genetic variables as IVs in large-scale panel studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在跨滞后面板模型中使用工具变量衡量随时间变化的因果关系。
交叉滞后面板模型(CLPM)通常用于估计重复评估的两个变量之间的因果影响。跨滞后面板模型中的滞后效应取决于评估之间的时间间隔,如果时间间隔较长,则最终无法检测到滞后效应。为了解决这一局限性,我们在 CLPM 中加入了工具变量 (IV),即两个研究波和两个变量。这样就可以估算出每个波次的滞后效应(即 "远端 "效应)和双向横截面效应(即 "近端 "效应)。远端效应反映了跨时间的格兰杰因果影响,这种影响随着时间间隔的增加而衰减。近端效应捕捉了随着时间推移而累积的因果影响,当远端效应在更长的时间间隔内无法检测到时,近端效应有助于推断因果关系。如果近端效应显著,而远端效应微乎其微,则意味着时间间隔太长,无法使用标准的 CLPM 估算该时间间隔的滞后效应。通过模拟和实证应用,我们证明了时间间隔对 CLPM 因果推断的影响,并介绍了无论研究的时间间隔如何都能检测因果影响的建模策略。此外,为了激励所提模型的经验应用,我们强调了在大规模面板研究中使用遗传变量作为 IV 的实用性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multivariate Behavioral Research
Multivariate Behavioral Research 数学-数学跨学科应用
CiteScore
7.60
自引率
2.60%
发文量
49
审稿时长
>12 weeks
期刊介绍: Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.
期刊最新文献
Why You Should Not Estimate Mediated Effects Using the Difference-in-Coefficients Method When the Outcome is Binary. A Causal View on Bias in Missing Data Imputation: The Impact of Evil Auxiliary Variables on Norming of Test Scores. Make Some Noise: Generating Data from Imperfect Factor Models. Exploring Estimation Procedures for Reducing Dimensionality in Psychological Network Modeling. A Review of Some of the History of Factorial Invariance and Differential Item Functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1