{"title":"Missing Data in Discrete Time State-Space Modeling of Ecological Momentary Assessment Data: A Monte-Carlo Study of Imputation Methods.","authors":"L R Slipetz, A Falk, T R Henry","doi":"10.1080/00273171.2025.2469055","DOIUrl":null,"url":null,"abstract":"<p><p>When using ecological momentary assessment data (EMA), missing data is pervasive as participant attrition is a common issue. Thus, any EMA study must have a missing data plan. In this paper, we discuss missingness in time series analysis and the appropriate way to handle missing data when the data is modeled as an idiographic discrete time continuous measure state-space model. We found that Missing Completely at Random, Missing At Random, and Time-dependent Missing At Random data have less bias and variability than Autoregressive Time-dependent Missing At Random and Missing Not At Random. The Kalman filter excelled at handling missing data under most conditions. Contrary to the literature, we found that using a variety of methods, multiple imputations struggled to recover the parameters.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":" ","pages":"1-16"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2025.2469055","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
When using ecological momentary assessment data (EMA), missing data is pervasive as participant attrition is a common issue. Thus, any EMA study must have a missing data plan. In this paper, we discuss missingness in time series analysis and the appropriate way to handle missing data when the data is modeled as an idiographic discrete time continuous measure state-space model. We found that Missing Completely at Random, Missing At Random, and Time-dependent Missing At Random data have less bias and variability than Autoregressive Time-dependent Missing At Random and Missing Not At Random. The Kalman filter excelled at handling missing data under most conditions. Contrary to the literature, we found that using a variety of methods, multiple imputations struggled to recover the parameters.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.