Rapid and stable energy storage using MoN/Mo2N composite electrodes

IF 7.5 Q1 CHEMISTRY, PHYSICAL Applied Surface Science Advances Pub Date : 2024-02-01 DOI:10.1016/j.apsadv.2024.100579
Jeyakiruba Palraj , Anthony Arulraj , Sasikumar M , Helen Annal Therese
{"title":"Rapid and stable energy storage using MoN/Mo2N composite electrodes","authors":"Jeyakiruba Palraj ,&nbsp;Anthony Arulraj ,&nbsp;Sasikumar M ,&nbsp;Helen Annal Therese","doi":"10.1016/j.apsadv.2024.100579","DOIUrl":null,"url":null,"abstract":"<div><p>Molybdenum nitride-based composites, specifically the two-dimensional MoN/Mo<sub>2</sub>N variants, emerge as promising electrode materials for next-generation energy storage devices. This research presents a facile synthesis approach involving a mechanochemical method followed by heat treatment at 900 ֯C in a nitrogen atmosphere to produce the MoN/Mo<sub>2</sub>N composite material. Crystallographic analysis using X-ray diffraction (XRD) and morphological characterization <em>via</em> high-resolution scanning electron microscopy (HRSEM) were conducted. The electrochemical evaluation demonstrated remarkable supercapacitor performance, with a specific capacitance of 306.7 F/g at 1 A/g, highlighting exceptional charge storage capacity. Even at a higher current density of 2 A/g, the composite maintained substantial reversible capacity (198.6 F/g), higher capacitance retention (95.7 %), and Coulombic efficiency (86.2 %) over 6000 cycles, showcasing its robust stability. At a challenging current density of 10 A/g, the specific capacitance remained high at 85.4 F/g. Detailed charge storage mechanism analysis, employing the Dunn method, revealed a complex interplay of capacitive and diffusive processes. Particularly noteworthy was the predominance of capacitive behavior, constituting 78.4 % at an accelerated scan rate of 100 mV/s. This observation underscores the material's advantageous propensity for a higher proportion of capacitive behavior in the charge storage mechanism at elevated scan rates, making it well-suited for applications requiring rapid energy storage and release.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523924000072/pdfft?md5=38af1a7d8a3d2cc225ada43578b44335&pid=1-s2.0-S2666523924000072-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523924000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum nitride-based composites, specifically the two-dimensional MoN/Mo2N variants, emerge as promising electrode materials for next-generation energy storage devices. This research presents a facile synthesis approach involving a mechanochemical method followed by heat treatment at 900 ֯C in a nitrogen atmosphere to produce the MoN/Mo2N composite material. Crystallographic analysis using X-ray diffraction (XRD) and morphological characterization via high-resolution scanning electron microscopy (HRSEM) were conducted. The electrochemical evaluation demonstrated remarkable supercapacitor performance, with a specific capacitance of 306.7 F/g at 1 A/g, highlighting exceptional charge storage capacity. Even at a higher current density of 2 A/g, the composite maintained substantial reversible capacity (198.6 F/g), higher capacitance retention (95.7 %), and Coulombic efficiency (86.2 %) over 6000 cycles, showcasing its robust stability. At a challenging current density of 10 A/g, the specific capacitance remained high at 85.4 F/g. Detailed charge storage mechanism analysis, employing the Dunn method, revealed a complex interplay of capacitive and diffusive processes. Particularly noteworthy was the predominance of capacitive behavior, constituting 78.4 % at an accelerated scan rate of 100 mV/s. This observation underscores the material's advantageous propensity for a higher proportion of capacitive behavior in the charge storage mechanism at elevated scan rates, making it well-suited for applications requiring rapid energy storage and release.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 MoN/Mo2N 复合电极实现快速稳定的能量存储
氮化钼基复合材料,特别是二维 MoN/Mo2N 变体,有望成为下一代储能设备的电极材料。本研究介绍了一种简便的合成方法,即先采用机械化学方法,然后在氮气环境中以 900 ֯C 的温度进行热处理,从而制备出 MoN/Mo2N 复合材料。利用 X 射线衍射 (XRD) 进行了晶体学分析,并通过高分辨率扫描电子显微镜 (HRSEM) 进行了形态学表征。电化学评估显示了超级电容器的卓越性能,在 1 A/g 时的比电容为 306.7 F/g,凸显了非凡的电荷存储能力。即使在 2 A/g 的较高电流密度下,该复合材料也能在 6000 次循环中保持可逆容量(198.6 F/g)、较高的电容保持率(95.7%)和库仑效率(86.2%),显示了其强大的稳定性。在具有挑战性的 10 A/g 电流密度下,比电容仍保持在 85.4 F/g 的高水平。利用 Dunn 方法进行的详细电荷存储机制分析表明,电容和扩散过程之间存在复杂的相互作用。特别值得注意的是,电容行为占主导地位,在 100 mV/s 的加速扫描速率下占 78.4%。这一观察结果凸显了该材料的优势,即在较高的扫描速率下,电荷存储机制中电容行为所占比例较高,因此非常适合需要快速存储和释放能量的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
期刊最新文献
Performance analysis of turning operation parameters empirically on Delrin Surface Engineered 2D Materials based Platforms for Advanced Technologies The essential synergy between experiments and theory in applied surface science Manufacturing and properties characterization of Ti patterned coatings for water electrolyzers by CSAM Exploring the role of edges in surface functionalization and stability of plasma-modified carbon materials: Experimental and DFT insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1