High gain and high-efficiency compact resonator antennas based on spoof surface plasmon polaritons

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Frequenz Pub Date : 2024-02-14 DOI:10.1515/freq-2023-0164
Dou Tian, Amin Kianinejad, Jiafu Wang, Chen Guo, Anxue Zhang
{"title":"High gain and high-efficiency compact resonator antennas based on spoof surface plasmon polaritons","authors":"Dou Tian, Amin Kianinejad, Jiafu Wang, Chen Guo, Anxue Zhang","doi":"10.1515/freq-2023-0164","DOIUrl":null,"url":null,"abstract":"We proposed a high gain high-efficiency compact metallic resonator antenna operating at even-mode meander line spoof surface plasmon polaritons (MLSSPPs). The high radiation efficiency is caused by the bulk of fields crowded in lossless air near the antenna rather than in lossy dielectric as in conventional dielectric resonator antennas (DRAs). The proposed antenna also exhibits compact size because of its high effective refractive index. A reliable equivalent circuit model is proposed for the design of the resonator antenna with basic mode of half wavelength resonant mode. As an example, a meander-line SSPP antenna is designed, fabricated and measured. Both the simulated and measured results show the advantages of high efficiency and compact volume. In addition, the antenna achieves higher gain and wider relative bandwidth per wavelength cube volume compared with its counterparts. This method provides a good alternative for designing DRAs.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"44 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0164","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a high gain high-efficiency compact metallic resonator antenna operating at even-mode meander line spoof surface plasmon polaritons (MLSSPPs). The high radiation efficiency is caused by the bulk of fields crowded in lossless air near the antenna rather than in lossy dielectric as in conventional dielectric resonator antennas (DRAs). The proposed antenna also exhibits compact size because of its high effective refractive index. A reliable equivalent circuit model is proposed for the design of the resonator antenna with basic mode of half wavelength resonant mode. As an example, a meander-line SSPP antenna is designed, fabricated and measured. Both the simulated and measured results show the advantages of high efficiency and compact volume. In addition, the antenna achieves higher gain and wider relative bandwidth per wavelength cube volume compared with its counterparts. This method provides a good alternative for designing DRAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于欺骗性表面等离子体极化子的高增益、高效率紧凑型谐振器天线
我们提出了一种在偶模蜿蜒线欺骗表面等离子体极化子(MLSSPPs)下工作的高增益高效紧凑型金属谐振器天线。之所以能实现高辐射效率,是因为大部分场都挤在天线附近的无损空气中,而不是像传统介质谐振器天线(DRA)那样挤在有损介质中。由于其有效折射率高,拟议的天线还具有体积小的特点。为设计具有半波长谐振模式基本模式的谐振天线,提出了一个可靠的等效电路模型。以蜿蜒线 SSPP 天线为例,对其进行了设计、制造和测量。仿真和测量结果均显示出高效率和体积小的优点。此外,与同类产品相比,该天线在单位波长立方体体积内实现了更高的增益和更宽的相对带宽。这种方法为设计 DRA 提供了一个很好的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
期刊最新文献
A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures Wideband circularly polarized reconfigurable metasurface antenna for 5G applications Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network An AMC-based low-RCS conformal phased array design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1