Kai Xuan Wang, Jia Qi Wang, Zeng Hui Shi, Qi Wang, Feng Wei, Le Xu, Rui Li, Xiao Yu Tong, Qiwei Li
In this letter, a wideband folded reflectarray antenna with a novel circularly polarized converter is presented. The main reflectarray is composed of dual-polarized units, which can achieve good polarization and phase characteristics with a smaller size. Based on 3-D printing technology, the proposed dielectric unit can be used to design the low-cost linear-to-circular polarization converter (LCPC) with wider bandwidth. In order to validate the performance of the proposed circularly polarized folded reflectarray antenna (CPFRA), a prototype is manufactured and measured. The maximum gain of 25.3 dBic and the maximum aperture efficiency of 38 % are obtained. The measured 3 dB gain bandwidth is 32.7 % and the measured 3 dB AR bandwidth is 31.7 %, respectively. The simulated and measured results show great agreement.
本信介绍了一种带有新型圆极化转换器的宽带折叠反射阵列天线。主反射阵列由双极化单元组成,能以较小的尺寸实现良好的极化和相位特性。基于三维打印技术,所提出的介质单元可用于设计带宽更宽的低成本线性-圆极化转换器(LCPC)。为了验证所提出的圆极化折叠反射阵列天线(CPFRA)的性能,制造并测量了一个原型。获得的最大增益为 25.3 dBic,最大孔径效率为 38%。测量的 3 dB 增益带宽为 32.7%,测量的 3 dB AR 带宽为 31.7%。模拟结果和测量结果非常吻合。
{"title":"A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter","authors":"Kai Xuan Wang, Jia Qi Wang, Zeng Hui Shi, Qi Wang, Feng Wei, Le Xu, Rui Li, Xiao Yu Tong, Qiwei Li","doi":"10.1515/freq-2024-0027","DOIUrl":"https://doi.org/10.1515/freq-2024-0027","url":null,"abstract":"In this letter, a wideband folded reflectarray antenna with a novel circularly polarized converter is presented. The main reflectarray is composed of dual-polarized units, which can achieve good polarization and phase characteristics with a smaller size. Based on 3-D printing technology, the proposed dielectric unit can be used to design the low-cost linear-to-circular polarization converter (LCPC) with wider bandwidth. In order to validate the performance of the proposed circularly polarized folded reflectarray antenna (CPFRA), a prototype is manufactured and measured. The maximum gain of 25.3 dBic and the maximum aperture efficiency of 38 % are obtained. The measured 3 dB gain bandwidth is 32.7 % and the measured 3 dB AR bandwidth is 31.7 %, respectively. The simulated and measured results show great agreement.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"2 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunxiang Zhang, Bin Gu, Zichen Wu, Yicheng Wang, Jixuan Li
A high-selectivity wideband bandpass filter (BPF) based on a quintuple-mode stub-loaded resonator and defected ground structures (DGSs) is presented. Thanks to the symmetrical topology, the even/odd theory is adopted for analyses. By properly adjusting the stub dimensions, the resonant frequencies of the transmission poles and zeros can be controlled to obtain wide passband and sharp out-of-band rejection performances. The bandwidth of the upper stopband is further extended by introducing a pair of DGSs under the interdigital coupled line feeding structures, and the spurious response rejection is improved by 18.9 dB. A BPF prototype that operates at 6 GHz with a fractional bandwidth (RBW) of 70 % is manufactured for validation. The measured insertion loss and return loss are 1.3 and 17 dB, respectively. The measured out-of-band rejection over DC-2 GHz and 8.8–21 GHz are better than −30 dB.
{"title":"High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures","authors":"Yunxiang Zhang, Bin Gu, Zichen Wu, Yicheng Wang, Jixuan Li","doi":"10.1515/freq-2024-0104","DOIUrl":"https://doi.org/10.1515/freq-2024-0104","url":null,"abstract":"A high-selectivity wideband bandpass filter (BPF) based on a quintuple-mode stub-loaded resonator and defected ground structures (DGSs) is presented. Thanks to the symmetrical topology, the even/odd theory is adopted for analyses. By properly adjusting the stub dimensions, the resonant frequencies of the transmission poles and zeros can be controlled to obtain wide passband and sharp out-of-band rejection performances. The bandwidth of the upper stopband is further extended by introducing a pair of DGSs under the interdigital coupled line feeding structures, and the spurious response rejection is improved by 18.9 dB. A BPF prototype that operates at 6 GHz with a fractional bandwidth (RBW) of 70 % is manufactured for validation. The measured insertion loss and return loss are 1.3 and 17 dB, respectively. The measured out-of-band rejection over DC-2 GHz and 8.8–21 GHz are better than −30 dB.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"3 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A framework of a metasurface (MTS) – based wideband circularly polarized (CP) reconfigurable antenna for fifth generation (5G) wireless systems operating in the sub-6 GHz mid-frequency range is presented in this article. The proposed structure contains a simple patch antenna, which serves as the primary source, a shorting pin, two ring slots, and a metasurface superstrate. The shorting pin and two ring slots produce perturbation resulting in circular polarization with a narrow axial ratio (AR) bandwidth. A metasurface (MTS) superstrate composed of 4 × 4 rectangular patches stacked over the primary source antenna generates additional resonances that significantly improve the −10 dB impedance and 3 dB axial ratio (AR) bandwidth. Two PIN diodes are employed to alter the circular polarization between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The prototype is made using an FR-4 epoxy substrate and has an overall size of 50 mm × 35 mm × 4.2 mm. The antenna has a −10 dB bandwidth of 44 % (4.0–6.2) and a 3 dB axial ratio bandwidth of 28 % (4.2–5.6). It also has a 3 dB beam width of 74° and 85° in the E and H planes, a gain of 7.1 dBi, cross-polar isolation of more than 15 dB, and a unidirectional radiation pattern. The simulated and measured results confirm that the implemented antenna is promising for sub-6 GHz 5G communication systems, particularly cognitive radio, wireless body area networks (WBAN), and satellite communication systems.
本文介绍了一种基于元表面(MTS)的宽带圆极化(CP)可重构天线框架,适用于工作在 6 GHz 以下中频范围的第五代(5G)无线系统。所提出的结构包含一个作为主源的简单贴片天线、一个短路引脚、两个环形槽和一个元表面叠层。短路引脚和两个环形槽产生扰动,从而产生具有窄轴向比(AR)带宽的圆极化。元表面 (MTS) 叠层由 4 × 4 矩形贴片组成,堆叠在主源天线上,产生额外的谐振,显著改善了 -10 dB 阻抗和 3 dB 轴向比 (AR) 带宽。采用两个 PIN 二极管在左手圆极化 (LHCP) 和右手圆极化 (RHCP) 之间改变圆极化。原型使用 FR-4 环氧树脂基板制作,总尺寸为 50 mm × 35 mm × 4.2 mm。天线的 -10 dB 带宽为 44 %(4.0-6.2),3 dB 轴向比带宽为 28 %(4.2-5.6)。此外,它在 E 平面和 H 平面的 3 dB 波束宽度分别为 74° 和 85°,增益为 7.1 dBi,跨极隔离度超过 15 dB,辐射模式为单向。模拟和测量结果证实,所实现的天线有望用于 6 GHz 以下的 5G 通信系统,特别是认知无线电、无线体域网 (WBAN) 和卫星通信系统。
{"title":"Wideband circularly polarized reconfigurable metasurface antenna for 5G applications","authors":"Sivakumar Ellusamy, Ramachandran Balasubramanian","doi":"10.1515/freq-2023-0216","DOIUrl":"https://doi.org/10.1515/freq-2023-0216","url":null,"abstract":"A framework of a metasurface (MTS) – based wideband circularly polarized (CP) reconfigurable antenna for fifth generation (5G) wireless systems operating in the sub-6 GHz mid-frequency range is presented in this article. The proposed structure contains a simple patch antenna, which serves as the primary source, a shorting pin, two ring slots, and a metasurface superstrate. The shorting pin and two ring slots produce perturbation resulting in circular polarization with a narrow axial ratio (AR) bandwidth. A metasurface (MTS) superstrate composed of 4 × 4 rectangular patches stacked over the primary source antenna generates additional resonances that significantly improve the −10 dB impedance and 3 dB axial ratio (AR) bandwidth. Two PIN diodes are employed to alter the circular polarization between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The prototype is made using an FR-4 epoxy substrate and has an overall size of 50 mm × 35 mm × 4.2 mm. The antenna has a −10 dB bandwidth of 44 % (4.0–6.2) and a 3 dB axial ratio bandwidth of 28 % (4.2–5.6). It also has a 3 dB beam width of 74° and 85° in the E and H planes, a gain of 7.1 dBi, cross-polar isolation of more than 15 dB, and a unidirectional radiation pattern. The simulated and measured results confirm that the implemented antenna is promising for sub-6 GHz 5G communication systems, particularly cognitive radio, wireless body area networks (WBAN), and satellite communication systems.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"8 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research introduces a compact Ultra-Wideband (UWB) antipodal Vivaldi antenna with a U-slot tailored for biomedical applications. Utilizing an elliptical tapered patch variation on a 50*32 mm2 substrate achieves its compact design. Parameter optimization, employing the Multi-Layer Stacked Shallow Attention Neural Network (MLSSANN) with Adaptive Gannet Optimization Algorithm (AGOA), ensures accurate predictions and efficient exploration of the design space. Performance analysis includes metrics like gain, directivity, reflection coefficients, return loss and radiation efficiency. The U-slot variant exhibits higher gain peaking at 24.5 GHz (10 dB) compared to the standard variant peaking near 37 GHz (13.7 dB). The U-slot antenna also shows improved directivity and return loss, with a 13.89 % enhancement in return loss at 3.7 GHz. Moreover, the addition of the slot shifts the lower cut-off frequency from 1,580 MHz to 740 MHz, reducing the antenna size by 41 % while maintaining acceptable radiation characteristics.
{"title":"Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network","authors":"Nishant Madhukar Borkar, Pallavi Keshavrao Parlewar","doi":"10.1515/freq-2024-0063","DOIUrl":"https://doi.org/10.1515/freq-2024-0063","url":null,"abstract":"This research introduces a compact Ultra-Wideband (UWB) antipodal Vivaldi antenna with a U-slot tailored for biomedical applications. Utilizing an elliptical tapered patch variation on a 50*32 mm<jats:sup>2</jats:sup> substrate achieves its compact design. Parameter optimization, employing the Multi-Layer Stacked Shallow Attention Neural Network (MLSSANN) with Adaptive Gannet Optimization Algorithm (AGOA), ensures accurate predictions and efficient exploration of the design space. Performance analysis includes metrics like gain, directivity, reflection coefficients, return loss and radiation efficiency. The U-slot variant exhibits higher gain peaking at 24.5 GHz (10 dB) compared to the standard variant peaking near 37 GHz (13.7 dB). The U-slot antenna also shows improved directivity and return loss, with a 13.89 % enhancement in return loss at 3.7 GHz. Moreover, the addition of the slot shifts the lower cut-off frequency from 1,580 MHz to 740 MHz, reducing the antenna size by 41 % while maintaining acceptable radiation characteristics.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"42 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, an integrated radiation and scattering performance array conformed with the cylinder is presented. Wideband RCS reduction can be achieved and the radiating performance is maintained without loading any other structures. Two different antenna units with similar radiation performances and different reflection phases are designed to form a 6 × 6 conformal array. To verify the simulation results, a prototype of a 6 × 6 units integrated conformal array was fabricated and measured. The experimental results show that the proposed conformal array has better scanning performance above ±40° in the range of 8.2–11.3 GHz. In addition, the monostatic RCS reduction of the proposed array is more than 5 dB covering the working band of the array antenna with a maximum reduction value of 24.2 dB. The measured results agree well with the simulation results.
{"title":"An AMC-based low-RCS conformal phased array design","authors":"Yangyang Guan, Hui Xin, Jiahe Cui, Peng Zhang","doi":"10.1515/freq-2024-0054","DOIUrl":"https://doi.org/10.1515/freq-2024-0054","url":null,"abstract":"In this article, an integrated radiation and scattering performance array conformed with the cylinder is presented. Wideband RCS reduction can be achieved and the radiating performance is maintained without loading any other structures. Two different antenna units with similar radiation performances and different reflection phases are designed to form a 6 × 6 conformal array. To verify the simulation results, a prototype of a 6 × 6 units integrated conformal array was fabricated and measured. The experimental results show that the proposed conformal array has better scanning performance above ±40° in the range of 8.2–11.3 GHz. In addition, the monostatic RCS reduction of the proposed array is more than 5 dB covering the working band of the array antenna with a maximum reduction value of 24.2 dB. The measured results agree well with the simulation results.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"25 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141938955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This manuscript introduces an innovative 1-to-4 modified Wilkinson power divider designed to operate at a frequency of 3.5 GHz. The configuration of the proposed divider is fabricated on Rogers RT/Duroid 5,880, featuring a relative permittivity of 2.2 and a thickness of 0.565 mm, respectively. The circular shape employed in the design minimises size and enhances power handling capability. To achieve a 4-way power division with equal power distribution at each output port, a 1:2 power divider at 3.5 GHz is cascaded. Furthermore, we present and analyse a 1:4 WPD implemented on a microstrip line utilised as a power supply for measuring a four-port MIMO antenna. This divider exhibits excellent impedance matching at all ports and consistent phase and amplitude characteristics between the output ports. The performance metrics of the presented divider, as detailed in both experimental and simulated results, include a return loss of 27.92 dB (1:2) and 29 dB (1:4), isolation of 33.046 dB (1:2) and 35.56 dB (1:4) and insertion loss of 3.17 dB (1:2) and 6.6 dB (1:4) respectively. These proposed power dividers hold potential applications in microwave and communication systems, mainly where power division is imperative with minimal signal loss and robust impedance matching.
{"title":"Compact circular Wilkinson power divider for wireless applications","authors":"Sharmeen Sultana, Neela Chattoraj","doi":"10.1515/freq-2024-0034","DOIUrl":"https://doi.org/10.1515/freq-2024-0034","url":null,"abstract":"This manuscript introduces an innovative 1-to-4 modified Wilkinson power divider designed to operate at a frequency of 3.5 GHz. The configuration of the proposed divider is fabricated on Rogers RT/Duroid 5,880, featuring a relative permittivity of 2.2 and a thickness of 0.565 mm, respectively. The circular shape employed in the design minimises size and enhances power handling capability. To achieve a 4-way power division with equal power distribution at each output port, a 1:2 power divider at 3.5 GHz is cascaded. Furthermore, we present and analyse a 1:4 WPD implemented on a microstrip line utilised as a power supply for measuring a four-port MIMO antenna. This divider exhibits excellent impedance matching at all ports and consistent phase and amplitude characteristics between the output ports. The performance metrics of the presented divider, as detailed in both experimental and simulated results, include a return loss of 27.92 dB (1:2) and 29 dB (1:4), isolation of 33.046 dB (1:2) and 35.56 dB (1:4) and insertion loss of 3.17 dB (1:2) and 6.6 dB (1:4) respectively. These proposed power dividers hold potential applications in microwave and communication systems, mainly where power division is imperative with minimal signal loss and robust impedance matching.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"22 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karthikeyan T. Angappan, Moses Nesasudha, Moses Abi T. Zerith, Agbotiname Lucky Imoize
A Polydimethylsiloxane (PDMS) based antenna is designed for skin tumor detection. The antenna functions at 2.45 GHz with a bandwidth of 2.30–2.64 GHz working in the ISM (Industrial, Scientific, and Medical) band. The size of the antenna is 40 × 40 × 1 mm3. This antenna detects tumors in the skin by considering the variations in values of the E-field, J-surf, and H-field. Various analyses such as the distance between the patch and stacked layer skin phantom for different tumor sizes and input power to the antenna are changed and antenna performance is observed. A significant amount of changes is attained which denotes the presence of the tumor. The proposed antenna is fabricated and the corresponding results are analyzed in the Anechoic Chamber. The antenna has an efficiency of 99 % with a Specific Absorption Rate of 1.3846 W/kg which is lower than 1.6 W/kg as per the recommendations of FCC standard.
{"title":"Analysis of tumor detection using polydimethylsiloxane based wearable antenna","authors":"Karthikeyan T. Angappan, Moses Nesasudha, Moses Abi T. Zerith, Agbotiname Lucky Imoize","doi":"10.1515/freq-2023-0384","DOIUrl":"https://doi.org/10.1515/freq-2023-0384","url":null,"abstract":"A Polydimethylsiloxane (PDMS) based antenna is designed for skin tumor detection. The antenna functions at 2.45 GHz with a bandwidth of 2.30–2.64 GHz working in the ISM (Industrial, Scientific, and Medical) band. The size of the antenna is 40 × 40 × 1 mm<jats:sup>3</jats:sup>. This antenna detects tumors in the skin by considering the variations in values of the E-field, J-surf, and H-field. Various analyses such as the distance between the patch and stacked layer skin phantom for different tumor sizes and input power to the antenna are changed and antenna performance is observed. A significant amount of changes is attained which denotes the presence of the tumor. The proposed antenna is fabricated and the corresponding results are analyzed in the Anechoic Chamber. The antenna has an efficiency of 99 % with a Specific Absorption Rate of 1.3846 W/kg which is lower than 1.6 W/kg as per the recommendations of FCC standard.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"12 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141865975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The possibilities for further development of mmWave fifth-generation wireless systems and their deployment in our lives are immense and will make human life simpler and faster. Fifth-generation wireless communication is opening up new possibilities for development in the near future. High data rates, low latency, and enormous bandwidth are the most essential factors. These factors are at the heart of making quality healthcare, smart education systems, and the fast and efficient distribution of energy. In account of the aforementioned benefits, 5G wireless systems are primarily made possible by high gain MIMO antenna with minimal coupling. The integration of traditional wave-guide components with planar circuits, on the other hand, is a difficult issue. SIW solves this problem by providing planar alternatives for waveguide-based devices like filters, antennas, and couplers. The SIW antenna has less interference, low radiation loss, excellent isolation, and outstanding shielding properties as compared with the conventional microstrip antenna. The proposed SISO SIW antenna has gain of 9.05 dBi with 87.54 % radiation efficiency. The −10 dB impedance bandwidth is 27.79–28.19 GHz. The SIW MIMO antenna has gain of 9.05 dBi with 81 % radiation efficiency. The antenna has an isolation 52 dB, and an ECC is 0.65 × 10−7 at 28 GHz. The proposed SIW MIMO antenna’s MEG lies below −3 to −5 dB for Gaussian and isotropic medium. The CCL for the proposed MIMO antenna is 0.29–0.36 bits/s/Hz in the operating band. This article presents a high-gain and high-isolation substrate integrated waveguide (SIW) MIMO antenna using orthogonal diversity for increasing isolation between the radiating elements. The designed MIMO antenna is operating in the 28 GHz band (27.42–28.79 GHz), which comes under the n261 (FR2 5G-New Radio frequency band) band used for 5G wireless communication.
毫米波第五代无线系统的进一步发展及其在我们生活中的应用具有巨大的可能性,将使人类的生活变得更加简单和快捷。第五代无线通信为不久的将来的发展开辟了新的可能性。高数据速率、低延迟和巨大的带宽是最基本的因素。这些因素是实现优质医疗保健、智能教育系统以及快速高效的能源分配的核心。考虑到上述优点,5G 无线系统主要通过耦合最小的高增益多输入多输出天线来实现。另一方面,传统波导元件与平面电路的集成是一个难题。SIW 为滤波器、天线和耦合器等基于波导的器件提供了平面替代品,从而解决了这一问题。与传统的微带天线相比,SIW 天线具有干扰小、辐射损耗低、隔离度高和屏蔽性能出色等特点。拟议的 SISO SIW 天线增益为 9.05 dBi,辐射效率为 87.54%。-10 dB 阻抗带宽为 27.79-28.19 GHz。SIW MIMO 天线的增益为 9.05 dBi,辐射效率为 81%。天线的隔离度为 52 dB,28 GHz 时的 ECC 为 0.65 × 10-7。对于高斯和各向同性介质,拟议的 SIW MIMO 天线的 MEG 低于 -3 至 -5dB。在工作频段内,拟议 MIMO 天线的 CCL 为 0.29-0.36 bits/s/Hz。本文介绍了一种高增益、高隔离度的基底集成波导(SIW)MIMO 天线,该天线采用正交分集技术提高辐射元件之间的隔离度。所设计的 MIMO 天线工作在 28 GHz 频段(27.42-28.79 GHz),该频段属于用于 5G 无线通信的 n261(FR2 5G-新无线电频段)频段。
{"title":"SIW MIMO antenna with high gain and isolation for fifth generation wireless communication systems","authors":"Mohit Pant, Leeladhar Malviya","doi":"10.1515/freq-2023-0440","DOIUrl":"https://doi.org/10.1515/freq-2023-0440","url":null,"abstract":"The possibilities for further development of mmWave fifth-generation wireless systems and their deployment in our lives are immense and will make human life simpler and faster. Fifth-generation wireless communication is opening up new possibilities for development in the near future. High data rates, low latency, and enormous bandwidth are the most essential factors. These factors are at the heart of making quality healthcare, smart education systems, and the fast and efficient distribution of energy. In account of the aforementioned benefits, 5G wireless systems are primarily made possible by high gain MIMO antenna with minimal coupling. The integration of traditional wave-guide components with planar circuits, on the other hand, is a difficult issue. SIW solves this problem by providing planar alternatives for waveguide-based devices like filters, antennas, and couplers. The SIW antenna has less interference, low radiation loss, excellent isolation, and outstanding shielding properties as compared with the conventional microstrip antenna. The proposed SISO SIW antenna has gain of 9.05 dBi with 87.54 % radiation efficiency. The −10 dB impedance bandwidth is 27.79–28.19 GHz. The SIW MIMO antenna has gain of 9.05 dBi with 81 % radiation efficiency. The antenna has an isolation 52 dB, and an ECC is 0.65 × 10<jats:sup>−7</jats:sup> at 28 GHz. The proposed SIW MIMO antenna’s MEG lies below −3 to −5 dB for Gaussian and isotropic medium. The CCL for the proposed MIMO antenna is 0.29–0.36 bits/s/Hz in the operating band. This article presents a high-gain and high-isolation substrate integrated waveguide (SIW) MIMO antenna using orthogonal diversity for increasing isolation between the radiating elements. The designed MIMO antenna is operating in the 28 GHz band (27.42–28.79 GHz), which comes under the n261 (FR2 5G-New Radio frequency band) band used for 5G wireless communication.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"17 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this study, the performance of two metamaterial-based antennas – transmit antennas with a double negative index (DNI) and receive antenna with an epsilon near zero (ENZ) material is described for image transfer application. These three-layered antennas are simulated and fabricated on Roger RO3003 substrate. The transmit antenna achieves a gain of 5.5 dBi and a bandwidth of 3.9 GHz, while the receive antenna reports a gain of 11.4 dBi with a 3-dB angular beam width of 32.5° at 5.8 GHz. These antennas are employed with a commercially available transmitter with a camera and receiver. Few images are captured at various distances and simultaneously transferred to the receiver. The images transferred wirelessly are found better in terms of the image quality score obtained using the Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) method, compared to those transferred using the standard dipole antennas. So, the proposed metamaterial-based antennas are suitable for wireless image/video transfer applications.
本研究介绍了两种基于超材料的天线--双负指数(DNI)发射天线和ε近零(ENZ)材料接收天线--在图像传输应用中的性能。这些三层天线是在 Roger RO3003 衬底上模拟和制造的。发射天线的增益为 5.5 dBi,带宽为 3.9 GHz;接收天线的增益为 11.4 dBi,在 5.8 GHz 时的 3 dB 角波束宽度为 32.5°。这些天线与带有摄像头和接收器的市售发射机配合使用。在不同的距离拍摄少量图像,并同时传输到接收器。与使用标准偶极子天线传输的图像相比,使用盲/少参考图像空间质量评估器(BRISQUE)方法获得的图像质量得分显示,无线传输的图像质量更好。因此,拟议的超材料天线适用于无线图像/视频传输应用。
{"title":"Metamaterial-based transmit and receive antennas for wireless image transfer at 5.8 GHz","authors":"Rashmi Borah, Neha Pal, Arjesh Jha, Shailesh Jayant, Gobind Rai, Amit Birwal, Kamlesh Patel","doi":"10.1515/freq-2024-0071","DOIUrl":"https://doi.org/10.1515/freq-2024-0071","url":null,"abstract":"In this study, the performance of two metamaterial-based antennas – transmit antennas with a double negative index (DNI) and receive antenna with an epsilon near zero (ENZ) material is described for image transfer application. These three-layered antennas are simulated and fabricated on Roger RO3003 substrate. The transmit antenna achieves a gain of 5.5 dBi and a bandwidth of 3.9 GHz, while the receive antenna reports a gain of 11.4 dBi with a 3-dB angular beam width of 32.5° at 5.8 GHz. These antennas are employed with a commercially available transmitter with a camera and receiver. Few images are captured at various distances and simultaneously transferred to the receiver. The images transferred wirelessly are found better in terms of the image quality score obtained using the Blind/Reference less Image Spatial Quality Evaluator (BRISQUE) method, compared to those transferred using the standard dipole antennas. So, the proposed metamaterial-based antennas are suitable for wireless image/video transfer applications.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"14 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper describes the general properties of power dividers, in particular matching and isolation. This original works relates to three different divider structures based on the circular-shaped resonator. These prototypes resemble the Wilkinson power divider due to their geometric configuration. These power dividers provide very good isolation between their output ports of −51.26 dB. In fact, the originality of these new structures stems from the idea of minimizing the size of this classic power divider. The required design parameters for the three proposed dividers came from a simulation study using the Ansoft HFSS tool in addition to a design theory. The experimental prototypes are well presented and operate at 2.4 GHz. They demonstrate excellent performance in adaptation, which refers to impedance matching, ensuring consistent impedance at the component terminations. Additionally, they exhibit low insertion losses and high isolation at 2.4 GHz. The measurement results agree well with those of the simulation. The benefits demonstrated by this study are significant, justifying the preference for these components.
{"title":"A novel design of a Wilkinson power divider based on the circular-shape resonator","authors":"Rahmouna El Bouslemti, Chemseddine M. Farah","doi":"10.1515/freq-2024-0005","DOIUrl":"https://doi.org/10.1515/freq-2024-0005","url":null,"abstract":"This paper describes the general properties of power dividers, in particular matching and isolation. This original works relates to three different divider structures based on the circular-shaped resonator. These prototypes resemble the Wilkinson power divider due to their geometric configuration. These power dividers provide very good isolation between their output ports of −51.26 dB. In fact, the originality of these new structures stems from the idea of minimizing the size of this classic power divider. The required design parameters for the three proposed dividers came from a simulation study using the Ansoft HFSS tool in addition to a design theory. The experimental prototypes are well presented and operate at 2.4 GHz. They demonstrate excellent performance in adaptation, which refers to impedance matching, ensuring consistent impedance at the component terminations. Additionally, they exhibit low insertion losses and high isolation at 2.4 GHz. The measurement results agree well with those of the simulation. The benefits demonstrated by this study are significant, justifying the preference for these components.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"38 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}