{"title":"Wideband circularly polarized reconfigurable metasurface antenna for 5G applications","authors":"Sivakumar Ellusamy, Ramachandran Balasubramanian","doi":"10.1515/freq-2023-0216","DOIUrl":null,"url":null,"abstract":"A framework of a metasurface (MTS) – based wideband circularly polarized (CP) reconfigurable antenna for fifth generation (5G) wireless systems operating in the sub-6 GHz mid-frequency range is presented in this article. The proposed structure contains a simple patch antenna, which serves as the primary source, a shorting pin, two ring slots, and a metasurface superstrate. The shorting pin and two ring slots produce perturbation resulting in circular polarization with a narrow axial ratio (AR) bandwidth. A metasurface (MTS) superstrate composed of 4 × 4 rectangular patches stacked over the primary source antenna generates additional resonances that significantly improve the −10 dB impedance and 3 dB axial ratio (AR) bandwidth. Two PIN diodes are employed to alter the circular polarization between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The prototype is made using an FR-4 epoxy substrate and has an overall size of 50 mm × 35 mm × 4.2 mm. The antenna has a −10 dB bandwidth of 44 % (4.0–6.2) and a 3 dB axial ratio bandwidth of 28 % (4.2–5.6). It also has a 3 dB beam width of 74° and 85° in the E and H planes, a gain of 7.1 dBi, cross-polar isolation of more than 15 dB, and a unidirectional radiation pattern. The simulated and measured results confirm that the implemented antenna is promising for sub-6 GHz 5G communication systems, particularly cognitive radio, wireless body area networks (WBAN), and satellite communication systems.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0216","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A framework of a metasurface (MTS) – based wideband circularly polarized (CP) reconfigurable antenna for fifth generation (5G) wireless systems operating in the sub-6 GHz mid-frequency range is presented in this article. The proposed structure contains a simple patch antenna, which serves as the primary source, a shorting pin, two ring slots, and a metasurface superstrate. The shorting pin and two ring slots produce perturbation resulting in circular polarization with a narrow axial ratio (AR) bandwidth. A metasurface (MTS) superstrate composed of 4 × 4 rectangular patches stacked over the primary source antenna generates additional resonances that significantly improve the −10 dB impedance and 3 dB axial ratio (AR) bandwidth. Two PIN diodes are employed to alter the circular polarization between left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The prototype is made using an FR-4 epoxy substrate and has an overall size of 50 mm × 35 mm × 4.2 mm. The antenna has a −10 dB bandwidth of 44 % (4.0–6.2) and a 3 dB axial ratio bandwidth of 28 % (4.2–5.6). It also has a 3 dB beam width of 74° and 85° in the E and H planes, a gain of 7.1 dBi, cross-polar isolation of more than 15 dB, and a unidirectional radiation pattern. The simulated and measured results confirm that the implemented antenna is promising for sub-6 GHz 5G communication systems, particularly cognitive radio, wireless body area networks (WBAN), and satellite communication systems.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.