Chunyan Song, Mo Li, Weidong Zhang, Xiaodong Wu, Song Gao
{"title":"A study into strain sensor of cement-based material using CPW transmission lines","authors":"Chunyan Song, Mo Li, Weidong Zhang, Xiaodong Wu, Song Gao","doi":"10.1515/freq-2023-0258","DOIUrl":null,"url":null,"abstract":"Based on the theory of coplanar waveguide (CPW) transmission line, a novel microwave non-destructive strain monitoring sensor specifically designed for cement-based material structures is presented in this study. The aim is to establish the relationship between the variation of the S11 phase parameter of the CPW strain sensor and the structural strain, utilizing a linear analysis. The feasibility of the strain monitoring by the CPW sensor is validated through simulations and experiments. The obtained results demonstrate a strong linear correlation between the phase change of the S11 parameter and the strain, with a goodness of fit of 0.987. The simulated strain sensor exhibits a sensitivity of 48.83 ppm/με, while the experimental measurement sensor shows a sensitivity of 65.82 ppm/με. These findings highlight the potential significance of the proposed method, offering a new approach that is characterized by high sensitivity, low cost, and simplicity for strain monitoring in concrete structures. Among them, the sensor cement mortar matrix made in this study was mixed with the recycled material made of waste glass steel FRP after a certain treatment process. The development of this method holds promise for the advancement of health monitoring in concrete structures.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2023-0258","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the theory of coplanar waveguide (CPW) transmission line, a novel microwave non-destructive strain monitoring sensor specifically designed for cement-based material structures is presented in this study. The aim is to establish the relationship between the variation of the S11 phase parameter of the CPW strain sensor and the structural strain, utilizing a linear analysis. The feasibility of the strain monitoring by the CPW sensor is validated through simulations and experiments. The obtained results demonstrate a strong linear correlation between the phase change of the S11 parameter and the strain, with a goodness of fit of 0.987. The simulated strain sensor exhibits a sensitivity of 48.83 ppm/με, while the experimental measurement sensor shows a sensitivity of 65.82 ppm/με. These findings highlight the potential significance of the proposed method, offering a new approach that is characterized by high sensitivity, low cost, and simplicity for strain monitoring in concrete structures. Among them, the sensor cement mortar matrix made in this study was mixed with the recycled material made of waste glass steel FRP after a certain treatment process. The development of this method holds promise for the advancement of health monitoring in concrete structures.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.