Opportunities and challenges of indocyanine green in gastrointestinal cancers for intraoperative and nano-medicine application

IF 4.5 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Cancer Nanotechnology Pub Date : 2024-02-07 DOI:10.1186/s12645-024-00251-9
Liting Sun, Cong Meng, Zhongtao Zhang, Yao Luo, Zhengyang Yang, Hongwei Yao
{"title":"Opportunities and challenges of indocyanine green in gastrointestinal cancers for intraoperative and nano-medicine application","authors":"Liting Sun, Cong Meng, Zhongtao Zhang, Yao Luo, Zhengyang Yang, Hongwei Yao","doi":"10.1186/s12645-024-00251-9","DOIUrl":null,"url":null,"abstract":"The morbidity and mortality of gastrointestinal tumours remain high worldwide. Surgical resection is currently the most critical radical therapeutic schedule, while postoperative complications and sentinel lymph node (SLN) identification are closely related to the outcome. Indocyanine green (ICG)-mediated fluorescence imaging is increasingly being used in gastrointestinal surgery. It has been embraced by various surgical disciplines as a potential method to improve lymph node detection and enhance surgical field visualization. ICG can passively concentrate in SLN because of enhanced permeation and retention effects. After excitation by near-infrared light devices, SLN can display higher intensity fluorescence, helping visualization for better lymph node dissection. In addition, visual assessment of intestinal blood flow through ICG may reduce the incidence of anastomotic leakage. Although it has good clinical application, ICG-imaging still faces some problems, such as a higher false-negative rate, poorly targeted biodistribution, and lower fluorescence contrast, due to the lack of active tumour targeting. Thus, different ICG-coupled nanoparticles with inherent characteristics or functional modification-enhanced SLN identification features for gastrointestinal cancers bring benefit through active tumour targeting, superior tumour-background ratio, and high resolution. Nano-ICG combined with potential substances, including enhanced imaging contrast and/or combination therapy (chemotherapy, targeted therapy, immunotherapy, etc.), have been packaged and accumulated in the tumour area through active targeting for multimodal imaging and treatment. In this review, we outline the intraoperative application and possible future nanodirections of ICG in gastrointestinal cancer. The prospects and challenges of nano-ICG diagnostic and therapeutic methods in clinical applications are also discussed. ","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"49 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-024-00251-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The morbidity and mortality of gastrointestinal tumours remain high worldwide. Surgical resection is currently the most critical radical therapeutic schedule, while postoperative complications and sentinel lymph node (SLN) identification are closely related to the outcome. Indocyanine green (ICG)-mediated fluorescence imaging is increasingly being used in gastrointestinal surgery. It has been embraced by various surgical disciplines as a potential method to improve lymph node detection and enhance surgical field visualization. ICG can passively concentrate in SLN because of enhanced permeation and retention effects. After excitation by near-infrared light devices, SLN can display higher intensity fluorescence, helping visualization for better lymph node dissection. In addition, visual assessment of intestinal blood flow through ICG may reduce the incidence of anastomotic leakage. Although it has good clinical application, ICG-imaging still faces some problems, such as a higher false-negative rate, poorly targeted biodistribution, and lower fluorescence contrast, due to the lack of active tumour targeting. Thus, different ICG-coupled nanoparticles with inherent characteristics or functional modification-enhanced SLN identification features for gastrointestinal cancers bring benefit through active tumour targeting, superior tumour-background ratio, and high resolution. Nano-ICG combined with potential substances, including enhanced imaging contrast and/or combination therapy (chemotherapy, targeted therapy, immunotherapy, etc.), have been packaged and accumulated in the tumour area through active targeting for multimodal imaging and treatment. In this review, we outline the intraoperative application and possible future nanodirections of ICG in gastrointestinal cancer. The prospects and challenges of nano-ICG diagnostic and therapeutic methods in clinical applications are also discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吲哚菁绿在胃肠道癌症术中和纳米医学应用中的机遇与挑战
全世界胃肠道肿瘤的发病率和死亡率居高不下。手术切除是目前最关键的根治性治疗方案,而术后并发症和前哨淋巴结(SLN)的识别与治疗效果密切相关。吲哚菁绿(ICG)介导的荧光成像技术正越来越多地应用于胃肠道手术。它已被各种外科学科视为一种潜在的方法,可改善淋巴结检测并提高手术视野。由于渗透和滞留效应增强,ICG 可被动地聚集在 SLN 中。经近红外光设备激发后,SLN 可显示出更高强度的荧光,有助于更好地进行淋巴结清扫。此外,通过 ICG 对肠道血流进行可视化评估可降低吻合口漏的发生率。虽然 ICG-imaging 有着良好的临床应用前景,但它仍面临着一些问题,如由于缺乏主动肿瘤靶向性,假阴性率较高、生物分布靶向性差、荧光对比度较低等。因此,不同的 ICG 耦合纳米粒子具有固有特性或功能修饰增强的 SLN 识别功能,可通过主动肿瘤靶向、优异的肿瘤-背景比和高分辨率为胃肠道癌症带来益处。纳米 ICG 与潜在物质(包括增强成像对比度和/或联合治疗(化疗、靶向治疗、免疫治疗等))相结合,通过主动靶向在肿瘤区域包装和积累,用于多模态成像和治疗。在这篇综述中,我们概述了 ICG 在胃肠道癌症中的术中应用和未来可能的纳米定向。此外,还讨论了纳米 ICG 诊断和治疗方法在临床应用中的前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Nanotechnology
Cancer Nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍: Aim: Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas. Scope: Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.
期刊最新文献
A biocompatible nanoformulation of curcumin analogue and curd exosomes targeting EphA2 signalling cascade in head and neck cancer pH-sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo) Enhanced chemotherapy response in hepatocellular carcinoma: synergistic effects of miR-122 and doxorubicin co-delivery system inducing apoptosis and DNA damage Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC) High-frequency ultrasound-assisted drug delivery of chia, cress, and flax conjugated hematite iron oxide nanoparticle for sono-photodynamic lung cancer treatment in vitro and in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1