Dimensional control of interface coupling-induced ferromagnetism in CaRuO3/SrCuO2 superlattices

IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Npg Asia Materials Pub Date : 2024-02-16 DOI:10.1038/s41427-024-00530-2
Li Zhe, Shi Wenxiao, Zhang Jine, Zheng Jie, Wang Mengqin, Zhu ZhaoZhao, Han Furong, Zhang Hui, Xie Liming, Yunzhong Chen, Fengxia Hu, Baogen Shen, Yuansha Chen, Jirong Sun
{"title":"Dimensional control of interface coupling-induced ferromagnetism in CaRuO3/SrCuO2 superlattices","authors":"Li Zhe, Shi Wenxiao, Zhang Jine, Zheng Jie, Wang Mengqin, Zhu ZhaoZhao, Han Furong, Zhang Hui, Xie Liming, Yunzhong Chen, Fengxia Hu, Baogen Shen, Yuansha Chen, Jirong Sun","doi":"10.1038/s41427-024-00530-2","DOIUrl":null,"url":null,"abstract":"Due to the strong interactions from multiple degrees of freedom at the interfaces, electron-correlated oxide heterostructures have provided a promising platform for creating exotic quantum states. Understanding and controlling the coupling effects at the oxide interface are prerequisites for designing emergent interfacial phases with desired functionalities. Here, we report the dimensional control of the interface coupling-induced ferromagnetic (FM) phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. Structural analysis reveals the occurrence of chain-type to planar-type structural transitions for the SrCuO2 layer as the layer thickness increases. The Hall and magnetoresistance measurements indicate the appearance of an interfacial FM state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition of the SrCuO2 layers, the interfacial FM order gradually deteriorates and finally disappears. As shown by the X-ray absorption results, the charge transfer at the CaRuO3/chain-SrCuO2 and CaRuO3/plane-SrCuO2 interfaces are different, resulting in dimensional control of the interfacial magnetic state. The results from our study can be used to facilitate a new method to manipulate interface coupling and create emergent interfacial phases in oxide heterostructures. Perovskite transition-metal oxides, known for their complex electron interactions, exhibit unique physical properties like superconductivity and magnetoresistance. However, layering these materials can result in new, unexpected behaviors at their interfaces. This study focuses on a layered structure of perovskite ruthenate and strontium cuprate. The research shows that by controlling the thickness of SCO layers in CRO/SCO superlattices, it is possible to induce ferromagnetism in CRO, which normally does not exhibit this property. The authors conclude that this manipulation of interface coupling can lead to new interfacial phases with potential applications in spintronics. The findings open up possibilities for future research into the control of quantum phases in complex oxide materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. In this paper, we report the dimensional control of the interface coupling-induced ferromagnetic phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. The Hall and magnetoresistance measurements indicate the appearance of an interfacial ferromagnetic state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition from chain-type to planar-type of the SrCuO2 layers, the interfacial ferromagnetic order gradually deteriorates and finally disappears.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00530-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00530-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the strong interactions from multiple degrees of freedom at the interfaces, electron-correlated oxide heterostructures have provided a promising platform for creating exotic quantum states. Understanding and controlling the coupling effects at the oxide interface are prerequisites for designing emergent interfacial phases with desired functionalities. Here, we report the dimensional control of the interface coupling-induced ferromagnetic (FM) phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. Structural analysis reveals the occurrence of chain-type to planar-type structural transitions for the SrCuO2 layer as the layer thickness increases. The Hall and magnetoresistance measurements indicate the appearance of an interfacial FM state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition of the SrCuO2 layers, the interfacial FM order gradually deteriorates and finally disappears. As shown by the X-ray absorption results, the charge transfer at the CaRuO3/chain-SrCuO2 and CaRuO3/plane-SrCuO2 interfaces are different, resulting in dimensional control of the interfacial magnetic state. The results from our study can be used to facilitate a new method to manipulate interface coupling and create emergent interfacial phases in oxide heterostructures. Perovskite transition-metal oxides, known for their complex electron interactions, exhibit unique physical properties like superconductivity and magnetoresistance. However, layering these materials can result in new, unexpected behaviors at their interfaces. This study focuses on a layered structure of perovskite ruthenate and strontium cuprate. The research shows that by controlling the thickness of SCO layers in CRO/SCO superlattices, it is possible to induce ferromagnetism in CRO, which normally does not exhibit this property. The authors conclude that this manipulation of interface coupling can lead to new interfacial phases with potential applications in spintronics. The findings open up possibilities for future research into the control of quantum phases in complex oxide materials. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author. In this paper, we report the dimensional control of the interface coupling-induced ferromagnetic phase in perovskite-CaRuO3/infinite-layered-SrCuO2 superlattices. The Hall and magnetoresistance measurements indicate the appearance of an interfacial ferromagnetic state in the originally paramagnetic CaRuO3 layers when the CaRuO3 layer is in proximity to the chain-type SrCuO2 layers; this superlattice has the highest Curie temperature of ~75 K and perpendicular magnetic anisotropy. Along with the thickness-driven structural transition from chain-type to planar-type of the SrCuO2 layers, the interfacial ferromagnetic order gradually deteriorates and finally disappears.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CaRuO3/SrCuO2 超晶格中界面耦合诱导铁磁性的尺寸控制
由于界面上多个自由度的强烈相互作用,电子相关氧化物异质结构为创造奇异的量子态提供了一个前景广阔的平台。了解和控制氧化物界面的耦合效应是设计具有所需功能的新兴界面相的先决条件。在此,我们报告了对包晶-CaRuO3/无限层-SrCuO2 超晶格中界面耦合诱导铁磁(FM)相的尺寸控制。结构分析表明,随着层厚度的增加,SrCuO2 层会发生链型到平面型的结构转变。霍尔和磁阻测量结果表明,当 CaRuO3 层靠近链式 SrCuO2 层时,原本顺磁的 CaRuO3 层出现了界面调频态;这种超晶格的居里温度最高,约为 75 K,并且具有垂直磁各向异性。随着 SrCuO2 层的厚度驱动结构转变,界面调频秩序逐渐恶化并最终消失。正如 X 射线吸收结果所示,CaRuO3/链-SrCuO2 和 CaRuO3/平面-SrCuO2 界面的电荷转移是不同的,这导致了界面磁态的尺寸控制。我们的研究结果可用于促进一种新方法,以操纵氧化物异质结构中的界面耦合并创建新出现的界面相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
期刊最新文献
Relationship between network topology and negative electrode properties in Wadsley–Roth phase TiNb2O7 Recent advances in high-entropy superconductors Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection Band anisotropy and effective mass renormalization in strained metallic VO2 (101) thin films Molecular beam epitaxial In2Te3 electronic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1