Micro Scratch Behavior Study of Titanium Dioxide and Graphene Nanoplatelets Reinforced Polymer Nanocomposites

IF 1 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series B Pub Date : 2024-02-09 DOI:10.1134/s1560090423600298
Shubham, Susmita Naskar, Bankim Chandra Ray
{"title":"Micro Scratch Behavior Study of Titanium Dioxide and Graphene Nanoplatelets Reinforced Polymer Nanocomposites","authors":"Shubham, Susmita Naskar, Bankim Chandra Ray","doi":"10.1134/s1560090423600298","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Efficiency and maintenance reduction in polymer nanocomposites are critical objectives for engineers and scientists to have an optimized machine component design. A crucial factor in achieving these goals is scratch resistance, which necessitates careful reinforcement selection for polymer composites. In this study, the individual nanofillers titanium dioxide (TiO<sub>2</sub>) and graphene nanoplatelets (GnP) were morphologically characterized using electron microscopes, and molecular bonds analysis of epoxy-based hybrid nanocomposites was conducted using Fourier transform infrared (FTIR) spectroscopy. The amount of TiO<sub>2</sub> was kept constant at 2 phr (parts per resin) by weight, and GnP was varied as 0, 1, and 2 phr in the samples along with neat epoxy. A scratch adhesion test was performed, applying a constant and progressive load. The results indicate that an optimal combination of TiO<sub>2</sub> and GnP nanoparticles can enhance the scratch resistance properties of epoxy, as evidenced by favorable coefficients of friction (CoF) and scratch depths. Furthermore, optical and field emission scanning electron microscopes (FESEM) were employed to investigate scratch deformation in the nanocomposite samples. This article comprehensively reviews relevant literature, experimental details, significant findings, and a comparative analysis of scratch conditions in hybrid nanocomposites.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1134/s1560090423600298","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiency and maintenance reduction in polymer nanocomposites are critical objectives for engineers and scientists to have an optimized machine component design. A crucial factor in achieving these goals is scratch resistance, which necessitates careful reinforcement selection for polymer composites. In this study, the individual nanofillers titanium dioxide (TiO2) and graphene nanoplatelets (GnP) were morphologically characterized using electron microscopes, and molecular bonds analysis of epoxy-based hybrid nanocomposites was conducted using Fourier transform infrared (FTIR) spectroscopy. The amount of TiO2 was kept constant at 2 phr (parts per resin) by weight, and GnP was varied as 0, 1, and 2 phr in the samples along with neat epoxy. A scratch adhesion test was performed, applying a constant and progressive load. The results indicate that an optimal combination of TiO2 and GnP nanoparticles can enhance the scratch resistance properties of epoxy, as evidenced by favorable coefficients of friction (CoF) and scratch depths. Furthermore, optical and field emission scanning electron microscopes (FESEM) were employed to investigate scratch deformation in the nanocomposite samples. This article comprehensively reviews relevant literature, experimental details, significant findings, and a comparative analysis of scratch conditions in hybrid nanocomposites.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化钛和石墨烯纳米片增强聚合物纳米复合材料的微划痕行为研究
摘要 聚合物纳米复合材料的效率和减少维护是工程师和科学家优化机器部件设计的关键目标。实现这些目标的一个关键因素是抗划伤性,这就要求对聚合物复合材料的增强材料进行仔细选择。在本研究中,使用电子显微镜对二氧化钛(TiO2)和石墨烯纳米片(GnP)进行了形貌表征,并使用傅立叶变换红外(FTIR)光谱对环氧基混合纳米复合材料进行了分子键分析。按重量计,TiO2 的用量保持不变,为 2 phr(每树脂份数),GnP 与纯环氧一起在样品中的用量分别为 0、1 和 2 phr。在施加恒定和渐进载荷的情况下,进行了划痕附着力测试。结果表明,TiO2 和 GnP 纳米粒子的最佳组合可以增强环氧树脂的抗划痕性能,这一点可以从良好的摩擦系数(CoF)和划痕深度得到证明。此外,还采用光学和场发射扫描电子显微镜(FESEM)研究了纳米复合材料样品的划痕变形。本文全面回顾了相关文献、实验细节、重要发现以及混合纳米复合材料划痕条件的对比分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series B
Polymer Science, Series B 化学-高分子科学
CiteScore
1.80
自引率
8.30%
发文量
58
审稿时长
>0 weeks
期刊介绍: Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
期刊最新文献
Preparation and Properties of Epoxy-Modified Thermosetting High-ortho Phenolic Fibers Reaction Profiling and Process Optimization for the Azidation of Tetrafunctional Glycidyl Azide Polymer Using FTIR Spectroscopy Hydro-Thermal Degradation: A New and Rapid Method for Evaluating the Bio-degradation Performance of Poly(lactic acid) Synthesis of Cooligomer Based on 2-Allylphenol, Formaldehyde, and Ethylenediamine and Study of Its Structured Product as a Sorbent for Extraction of Uranyl Ions from Aqueous Systems Radical Polymerization of Methyl Methacrylate in the Presence of Phenazine as Photocatalyst
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1