Polyoxometalate-mediated growth of O-SnS@Cu2S heteronanosheets for high-performance oxygen and hydrogen evolution reactions

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2024-02-08 DOI:10.1007/s13204-023-02994-0
{"title":"Polyoxometalate-mediated growth of O-SnS@Cu2S heteronanosheets for high-performance oxygen and hydrogen evolution reactions","authors":"","doi":"10.1007/s13204-023-02994-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>To properly exploit undepleted sources of energy through energy conversion devices using water splitting reactions, there is a need for cost-effective, easily accessible, and long-lasting materials that are capable of performing bifunctional activity like hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this study, oxygen incorporation into SnS@Cu<sub>2</sub>S (O-SnS@Cu<sub>2</sub>S) heteronanosheets was architecture on Nickel foam utilizing polyoxometalate as bimetal precursors, and then this material exhibited superior activity, requiring only a small overpotential to generate high current densities compared to individual O-SnS and O-Cu<sub>2</sub>S arrays for the electrocatalytic HER activity. The Tafel slopes (26 mV dec<sup>−1</sup>) and electrochemical impedance spectroscopy (EIS) (<em>R</em><sub>ct</sub> = 1.2 Ω), further confirmed the favorable kinetics and conductivity of the O-SnS@Cu<sub>2</sub>S array. When compared to the O-Cu<sub>2</sub>S and O-SnS nanosheet arrays, the bimetal sulphides O-SnS@Cu<sub>2</sub>S array had much lower overpotentials, requiring only 170 mV and 232 mV, respectively, to achieve a current density of 10 mA cm<sup>−2</sup> in an alkaline solution for HER and OER. The O-SnS@Cu<sub>2</sub>S nanosheet array outperformed SnS and Cu<sub>2</sub>S, requiring lower overpotentials to achieve high current densities. The smaller value of Tafel slopes (23 mV dec<sup>−1</sup> for O-SnS@Cu<sub>2</sub>S) indicated improved kinetics, and EIS demonstrated a lower polarization resistance (<em>R</em><sub>ct</sub> = 0.2 Ω) for the O-SnS@Cu<sub>2</sub>S array. Importantly, the O-SnS@Cu<sub>2</sub>S array exhibited remarkable stability in alkaline electrolyte cycling experiments, making it an outstanding material for practical applications in energy conversion devices. This research proposes a feasible technique for the development of efficient and stable bifunctional bimetal-sulfide electrocatalysts with enormous potential for use in renewable energy.</p>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":null,"pages":null},"PeriodicalIF":3.6740,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13204-023-02994-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

To properly exploit undepleted sources of energy through energy conversion devices using water splitting reactions, there is a need for cost-effective, easily accessible, and long-lasting materials that are capable of performing bifunctional activity like hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this study, oxygen incorporation into SnS@Cu2S (O-SnS@Cu2S) heteronanosheets was architecture on Nickel foam utilizing polyoxometalate as bimetal precursors, and then this material exhibited superior activity, requiring only a small overpotential to generate high current densities compared to individual O-SnS and O-Cu2S arrays for the electrocatalytic HER activity. The Tafel slopes (26 mV dec−1) and electrochemical impedance spectroscopy (EIS) (Rct = 1.2 Ω), further confirmed the favorable kinetics and conductivity of the O-SnS@Cu2S array. When compared to the O-Cu2S and O-SnS nanosheet arrays, the bimetal sulphides O-SnS@Cu2S array had much lower overpotentials, requiring only 170 mV and 232 mV, respectively, to achieve a current density of 10 mA cm−2 in an alkaline solution for HER and OER. The O-SnS@Cu2S nanosheet array outperformed SnS and Cu2S, requiring lower overpotentials to achieve high current densities. The smaller value of Tafel slopes (23 mV dec−1 for O-SnS@Cu2S) indicated improved kinetics, and EIS demonstrated a lower polarization resistance (Rct = 0.2 Ω) for the O-SnS@Cu2S array. Importantly, the O-SnS@Cu2S array exhibited remarkable stability in alkaline electrolyte cycling experiments, making it an outstanding material for practical applications in energy conversion devices. This research proposes a feasible technique for the development of efficient and stable bifunctional bimetal-sulfide electrocatalysts with enormous potential for use in renewable energy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚氧化金属盐介导的 O-SnS@Cu2S 异性片生长,用于高性能氧气和氢气进化反应
摘要 为了通过利用水分离反应的能量转换装置适当利用未耗尽的能源,需要成本低廉、易于获得且使用寿命长的材料,这些材料应能够进行氢进化反应(HER)和氧进化反应(OER)等双功能活动。在这项研究中,利用聚氧化金属盐作为双金属前体,在泡沫镍上构建了将氧掺入SnS@Cu2S(O-SnS@Cu2S)异性片的体系,然后这种材料表现出卓越的活性,与单独的O-SnS和O-Cu2S阵列相比,只需要很小的过电位就能产生高电流密度,从而实现电催化HER活性。塔菲尔斜率(26 mV dec-1)和电化学阻抗谱(EIS)(Rct = 1.2 Ω)进一步证实了 O-SnS@Cu2S 阵列的良好动力学和导电性。与 O-Cu2S 和 O-SnS 纳米片阵列相比,双金属硫化物 O-SnS@Cu2S 阵列的过电位要低得多,在碱性溶液中实现 10 mA cm-2 的 HER 和 OER 电流密度分别只需要 170 mV 和 232 mV。O-SnS@Cu2S纳米片阵列的性能优于SnS和Cu2S,需要更低的过电位就能达到很高的电流密度。较小的塔菲尔斜率值(O-SnS@Cu2S 为 23 mV dec-1)表明动力学得到了改善,EIS 显示 O-SnS@Cu2S 阵列的极化电阻较低(Rct = 0.2 Ω)。重要的是,O-SnS@Cu2S 阵列在碱性电解液循环实验中表现出显著的稳定性,使其成为能源转换设备实际应用中的杰出材料。这项研究为开发高效稳定的双功能双金属硫化物电催化剂提出了一种可行的技术,在可再生能源领域具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
ZnO-based random lasing and their sensing applications: a mini-review Artificial intelligence-based control for membrane bioreactor in sewage treatment Highly sensitive MXene-based SO2 sensor enhanced by modification of SnO2 at room temperature Microbubble-based liposomal delivery of dasatinib and COL11A1siRNA for enhanced combination therapy against lung adenocarcinoma Theranostic nanocarrier for acyclovir: tailored SPIONs with MR contrast potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1