{"title":"A mode-matching analysis of flexible shells and waveguides with partitioning and muffler conditions","authors":"Rab Nawaz, Aqsa Yaseen, Hani Alahmadi, Burhan Tiryakioglu","doi":"10.1007/s10999-024-09710-y","DOIUrl":null,"url":null,"abstract":"<div><p>This article explores the waveguide phenomenon that possesses trifurcated rigid inlet/outlet and muffler conditions. Additionally, this waveguide is linked to a finite, thin, and flexible shell with the aid of partitioning discs located at the interfaces. The inside of the discs is coated with sound absorbent material, which can be fibrous or perforated, depending on the impedance conditions of the surface. To demonstrate the use of absorbent material at the interfaces, impedance formulation is used. The mode matching procedure is then utilized to find solution, it relies on the orthogonality conditions accompanying the material characteristics of the bounding surface and within the fluid. The study includes modeling the utilization of absorbent material at interfaces, and numerical experiments to analyze the acoustic attenuation. The analysis focuses on a specific configuration with duct region radii and a half length of the chamber at a frequency of 700 Hz. The results demonstrate that the absorption of power and transmission loss versus frequency vary through the fibrous coating and the edge conditions, and changing the clamped ends to pin-jointed ends optimizes the dispersion powers and the loss due to transmission. The study yields useful information to the acoustic dispersion via flexural expansion chamber, highlighting the importance of material properties, edge conditions, and configuration settings in the acoustic attenuation. The mode matching method and numerical experiments presented in this study can be useful for designing acoustic devices with flexible shells, providing a better understanding of the underlying physics and optimizing their performance.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 5","pages":"1009 - 1028"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-024-09710-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This article explores the waveguide phenomenon that possesses trifurcated rigid inlet/outlet and muffler conditions. Additionally, this waveguide is linked to a finite, thin, and flexible shell with the aid of partitioning discs located at the interfaces. The inside of the discs is coated with sound absorbent material, which can be fibrous or perforated, depending on the impedance conditions of the surface. To demonstrate the use of absorbent material at the interfaces, impedance formulation is used. The mode matching procedure is then utilized to find solution, it relies on the orthogonality conditions accompanying the material characteristics of the bounding surface and within the fluid. The study includes modeling the utilization of absorbent material at interfaces, and numerical experiments to analyze the acoustic attenuation. The analysis focuses on a specific configuration with duct region radii and a half length of the chamber at a frequency of 700 Hz. The results demonstrate that the absorption of power and transmission loss versus frequency vary through the fibrous coating and the edge conditions, and changing the clamped ends to pin-jointed ends optimizes the dispersion powers and the loss due to transmission. The study yields useful information to the acoustic dispersion via flexural expansion chamber, highlighting the importance of material properties, edge conditions, and configuration settings in the acoustic attenuation. The mode matching method and numerical experiments presented in this study can be useful for designing acoustic devices with flexible shells, providing a better understanding of the underlying physics and optimizing their performance.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.