Robust variable selection with exponential squared loss for the partially linear varying coefficient spatial autoregressive model

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Environmental and Ecological Statistics Pub Date : 2024-02-13 DOI:10.1007/s10651-024-00603-z
{"title":"Robust variable selection with exponential squared loss for the partially linear varying coefficient spatial autoregressive model","authors":"","doi":"10.1007/s10651-024-00603-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The partially linear varying coefficient spatial autoregressive model is a semi-parametric spatial autoregressive model in which the coefficients of some explanatory variables are variable, while the coefficients of the remaining explanatory variables are constant. For the nonparametric part, a local linear smoothing method is used to estimate the vector of coefficient functions in the model, and, to investigate its variable selection problem, this paper proposes a penalized robust regression estimation based on exponential squared loss, which can estimate the parameters while selecting important explanatory variables. A unique solution algorithm is composed using the block coordinate descent (BCD) algorithm and the concave-convex process (CCCP). Robustness of the proposed variable selection method is demonstrated by numerical simulations and illustrated by some housing data from Airbnb.</p>","PeriodicalId":50519,"journal":{"name":"Environmental and Ecological Statistics","volume":"167 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Ecological Statistics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10651-024-00603-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The partially linear varying coefficient spatial autoregressive model is a semi-parametric spatial autoregressive model in which the coefficients of some explanatory variables are variable, while the coefficients of the remaining explanatory variables are constant. For the nonparametric part, a local linear smoothing method is used to estimate the vector of coefficient functions in the model, and, to investigate its variable selection problem, this paper proposes a penalized robust regression estimation based on exponential squared loss, which can estimate the parameters while selecting important explanatory variables. A unique solution algorithm is composed using the block coordinate descent (BCD) algorithm and the concave-convex process (CCCP). Robustness of the proposed variable selection method is demonstrated by numerical simulations and illustrated by some housing data from Airbnb.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分线性变化系数空间自回归模型的指数平方损失稳健变量选择
摘要 部分线性变化系数空间自回归模型是一种半参数空间自回归模型,其中一些解释变量的系数是可变的,而其余解释变量的系数是常数。对于非参数部分,采用局部线性平滑法估计模型中的系数函数向量,为了研究其变量选择问题,本文提出了一种基于指数平方损失的惩罚性稳健回归估计,可以在估计参数的同时选择重要的解释变量。利用块坐标下降(BCD)算法和凹凸过程(CCCP)组成了一种独特的求解算法。通过数值模拟证明了所提出的变量选择方法的稳健性,并用 Airbnb 的一些住房数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental and Ecological Statistics
Environmental and Ecological Statistics 环境科学-环境科学
CiteScore
5.90
自引率
2.60%
发文量
27
审稿时长
>36 weeks
期刊介绍: Environmental and Ecological Statistics publishes papers on practical applications of statistics and related quantitative methods to environmental science addressing contemporary issues. Emphasis is on applied mathematical statistics, statistical methodology, and data interpretation and improvement for future use, with a view to advance statistics for environment, ecology and environmental health, and to advance environmental theory and practice using valid statistics. Besides clarity of exposition, a single most important criterion for publication is the appropriateness of the statistical method to the particular environmental problem. The Journal covers all aspects of the collection, analysis, presentation and interpretation of environmental data for research, policy and regulation. The Journal is cross-disciplinary within the context of contemporary environmental issues and the associated statistical tools, concepts and methods. The Journal broadly covers theory and methods, case studies and applications, environmental change and statistical ecology, environmental health statistics and stochastics, and related areas. Special features include invited discussion papers; research communications; technical notes and consultation corner; mini-reviews; letters to the Editor; news, views and announcements; hardware and software reviews; data management etc.
期刊最新文献
Identifying key drivers of extinction for Chitala populations: data-driven insights from an intraguild predation model using a Bayesian framework Health effects of noise and application of machine learning techniques as prediction tools in noise induced health issues: a systematic review Multivariate Bayesian models with flexible shared interactions for analyzing spatio-temporal patterns of rare cancers A novel hybrid approach based on outlier and error correction methods to predict river discharge using meteorological variables Bayesian design methods for improving the effectiveness of ecosystem monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1