An Interesting Correlation Between the Peak Slope and Peak Value of a Sunspot Cycle

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Solar Physics Pub Date : 2024-02-05 DOI:10.1007/s11207-024-02256-4
{"title":"An Interesting Correlation Between the Peak Slope and Peak Value of a Sunspot Cycle","authors":"","doi":"10.1007/s11207-024-02256-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The maximum slope of the sunspot number during the rising phase of a sunspot cycle has an excellent correlation with the maximum value of the sunspot number during that cycle. This is demonstrated using a Savitzky–Golay filter to both smooth and calculate the derivative of the sunspot-number data. Version 2 of the International Sunspot Number (<span> <span>\\(S\\)</span> </span>) is used to represent solar activity. The maximum of the slope during the rising phase of each cycle was correlated against the peaks of solar activity. Using three different correlation fits, the average predicted amplitude for Solar Cycle 25 is 130.7 ± 0.5, among the best correlations in solar predictions. A possible explanation for this correlation is given by the similar behavior of a shape function representing the time variation of the sunspot number. This universal function also provides the timing of the solar maximum by the time from the slope maximum to the peak in the function as late 2023 or early 2024. A Hilbert transform gives similar results, which are caused by the dominance of the 11-yr sunspot-cycle period in a Fourier fit of the sunspot number.</p>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11207-024-02256-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The maximum slope of the sunspot number during the rising phase of a sunspot cycle has an excellent correlation with the maximum value of the sunspot number during that cycle. This is demonstrated using a Savitzky–Golay filter to both smooth and calculate the derivative of the sunspot-number data. Version 2 of the International Sunspot Number ( \(S\) ) is used to represent solar activity. The maximum of the slope during the rising phase of each cycle was correlated against the peaks of solar activity. Using three different correlation fits, the average predicted amplitude for Solar Cycle 25 is 130.7 ± 0.5, among the best correlations in solar predictions. A possible explanation for this correlation is given by the similar behavior of a shape function representing the time variation of the sunspot number. This universal function also provides the timing of the solar maximum by the time from the slope maximum to the peak in the function as late 2023 or early 2024. A Hilbert transform gives similar results, which are caused by the dominance of the 11-yr sunspot-cycle period in a Fourier fit of the sunspot number.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳黑子周期的峰值斜率和峰值之间有趣的相关性
摘要 在一个太阳黑子周期的上升阶段,太阳黑子数的最大斜率与该周期内太阳黑子数的最大值有极好的相关性。利用萨维茨基-戈莱滤波器对太阳黑子数数据进行平滑和导数计算,证明了这一点。第 2 版国际太阳黑子数()被用来表示太阳活动。每个周期上升阶段的斜率最大值与太阳活动峰值相关。使用三种不同的相关拟合,太阳周期 25 的平均预测振幅为 130.7 ± 0.5,在太阳活动预测中属于最佳相关。这种相关性的一个可能解释是,代表太阳黑子数量时间变化的形状函数具有类似的行为。这个通用函数还提供了太阳极大值的时间,即从斜率极大值到函数峰值的时间为 2023 年末或 2024 年初。希尔伯特变换也给出了类似的结果,这是因为在太阳黑子数的傅立叶拟合中,11 年的太阳黑子周期占主导地位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
期刊最新文献
Machine-Learning-Based Numerical Solution for Low and Lou’s Nonlinear Force-Free Field Equilibria Multiscale Aspects of the Solar Indexes Mg II, F10.7 and Sunspot Number IRIS Observational Approach to the Oscillatory and Damping Nature of Network and Internetwork Chromosphere Small-Scale Brightening (SSBs) and Their Unusual Dynamical and Morphological Differences in Different Regions on the Solar Disk Cross-Scale Phase Relationship of the Ca II K Index with Solar Wind Parameters: A Space Climate Focus Asymmetric Hard X-ray Radiation of Two Ribbons in a Thermal-Dominated C-Class Flare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1