Xuqin Zhao, Min Luo, Fanhao Meng, Chula Sa, Shanhu Bao, Yuhai Bao
{"title":"Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change","authors":"Xuqin Zhao, Min Luo, Fanhao Meng, Chula Sa, Shanhu Bao, Yuhai Bao","doi":"10.1007/s40333-024-0090-3","DOIUrl":null,"url":null,"abstract":"<p>Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982–2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00–8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0090-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gross primary productivity (GPP) of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought. Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks, aiding efforts to mitigate the detrimental effects of climate change. In this study, we utilized the precipitation and temperature data from the Climatic Research Unit, the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the simulated vegetation GPP using the eddy covariance-light use efficiency (EC-LUE) model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982–2018. The main findings indicated that vegetation GPP decreased in 50.53% of the plateau, mainly in its northern and northeastern parts, while it increased in the remaining 49.47% area. Specifically, meadow steppe (78.92%) and deciduous forest (79.46%) witnessed a significant decrease in vegetation GPP, while alpine steppe (75.08%), cropland (76.27%), and sandy vegetation (87.88%) recovered well. Warming aridification areas accounted for 71.39% of the affected areas, while 28.53% of the areas underwent severe aridification, mainly located in the south and central regions. Notably, the warming aridification areas of desert steppe (92.68%) and sandy vegetation (90.24%) were significant. Climate warming was found to amplify the sensitivity of coniferous forest, deciduous forest, meadow steppe, and alpine steppe GPP to drought. Additionally, the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased. The cumulative effect of drought on vegetation GPP persisted for 3.00–8.00 months. The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.