{"title":"Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change","authors":"Qifei Han, Wei Xu, Chaofan Li","doi":"10.1007/s40333-024-0022-2","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric deposition of nitrogen (N) plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide. However, the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain. In this study, a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition (DNDC) model. Results showed that total vegetation carbon (C) in Central Asia was 0.35 (±0.09) Pg C/a and the averaged water stress index (WSI) was 0.20 (±0.02) for the whole area. Increasing N deposition led to an increase in the vegetation C of 65.56 (±83.03) Tg C and slightly decreased water stress in Central Asia. Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition, and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"62 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0022-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric deposition of nitrogen (N) plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide. However, the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain. In this study, a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition (DNDC) model. Results showed that total vegetation carbon (C) in Central Asia was 0.35 (±0.09) Pg C/a and the averaged water stress index (WSI) was 0.20 (±0.02) for the whole area. Increasing N deposition led to an increase in the vegetation C of 65.56 (±83.03) Tg C and slightly decreased water stress in Central Asia. Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition, and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally.
期刊介绍:
The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large.
The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.