Data-driven reconstruction of limit cycle position provides side information for improved model identification with SINDy

Bartosz Prokop, Nikita Frolov, Lendert Gelens
{"title":"Data-driven reconstruction of limit cycle position provides side information for improved model identification with SINDy","authors":"Bartosz Prokop, Nikita Frolov, Lendert Gelens","doi":"arxiv-2402.03168","DOIUrl":null,"url":null,"abstract":"Many important systems in nature are characterized by oscillations. To\nunderstand and interpret such behavior, researchers use the language of\nmathematical models, often in the form of differential equations. Nowadays,\nthese equations can be derived using data-driven machine learning approaches,\nsuch as the white-box method 'Sparse Identification of Nonlinear Dynamics'\n(SINDy). In this paper, we show that to ensure the identification of sparse and\nmeaningful models, it is crucial to identify the correct position of the system\nlimit cycle in phase space. Therefore, we propose how the limit cycle position\nand the system's nullclines can be identified by applying SINDy to the data set\nwith varying offsets, using three model evaluation criteria (complexity,\ncoefficient of determination, generalization error). We successfully test the\nmethod on an oscillatory FitzHugh-Nagumo model and a more complex model\nconsisting of two coupled cubic differential equations. Finally, we demonstrate\nthat using this additional side information on the limit cycle in phase space\ncan improve the success of model identification efforts in oscillatory systems.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.03168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many important systems in nature are characterized by oscillations. To understand and interpret such behavior, researchers use the language of mathematical models, often in the form of differential equations. Nowadays, these equations can be derived using data-driven machine learning approaches, such as the white-box method 'Sparse Identification of Nonlinear Dynamics' (SINDy). In this paper, we show that to ensure the identification of sparse and meaningful models, it is crucial to identify the correct position of the system limit cycle in phase space. Therefore, we propose how the limit cycle position and the system's nullclines can be identified by applying SINDy to the data set with varying offsets, using three model evaluation criteria (complexity, coefficient of determination, generalization error). We successfully test the method on an oscillatory FitzHugh-Nagumo model and a more complex model consisting of two coupled cubic differential equations. Finally, we demonstrate that using this additional side information on the limit cycle in phase space can improve the success of model identification efforts in oscillatory systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的极限周期位置重构为利用 SINDy 改进模型识别提供了侧面信息
自然界中的许多重要系统都以振荡为特征。为了理解和解释这种行为,研究人员使用数学模型语言,通常采用微分方程的形式。如今,这些方程可以通过数据驱动的机器学习方法得出,例如白盒方法 "非线性动力学稀疏识别"(SINDy)。在本文中,我们指出,要确保识别出稀疏且有意义的模型,识别系统极限周期在相空间中的正确位置至关重要。因此,我们提出了如何通过将 SINDy 应用于具有不同偏移量的数据集,利用三个模型评估标准(复杂度、决定系数、泛化误差)来识别极限周期位置和系统的空线。我们成功地在一个振荡 FitzHugh-Nagumo 模型和一个由两个耦合立方微分方程组成的更复杂模型上测试了这一方法。最后,我们证明了使用相空间极限周期的附加侧信息可以提高振荡系统模型识别工作的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1