Classification of Progressive Wear on a Multi-Directional Pin-on-Disc Tribometer Simulating Conditions in Human Joints-UHMWPE against CoCrMo Using Acoustic Emission and Machine Learning
Pushkar Deshpande, K. Wasmer, Thomas Imwinkelried, Roman Heuberger, Michael Dreyer, B. Weisse, R. Crockett, V. Pandiyan
{"title":"Classification of Progressive Wear on a Multi-Directional Pin-on-Disc Tribometer Simulating Conditions in Human Joints-UHMWPE against CoCrMo Using Acoustic Emission and Machine Learning","authors":"Pushkar Deshpande, K. Wasmer, Thomas Imwinkelried, Roman Heuberger, Michael Dreyer, B. Weisse, R. Crockett, V. Pandiyan","doi":"10.3390/lubricants12020047","DOIUrl":null,"url":null,"abstract":"Human joint prostheses experience wear failure due to the complex interactions between Ultra-High-Molecular-Weight Polyethylene (UHMWPE) and Cobalt-Chromium-Molybdenum (CoCrMo). This study uses the wear classification to investigate the gradual and progressive abrasive wear mechanisms in UHMWPE. Pin-on-disc tests were conducted under simulated in vivo conditions, monitoring wear using Acoustic Emission (AE). Two Machine Learning (ML) frameworks were employed for wear classification: manual feature extraction with ML classifiers and a contrastive learning-based Convolutional Neural Network (CNN) with ML classifiers. The CNN-based feature extraction approach achieved superior classification performance (94% to 96%) compared to manual feature extraction (81% to 89%). The ML techniques enable accurate wear classification, aiding in understanding surface states and early failure detection. Real-time monitoring using AE sensors shows promise for interventions and improving prosthetic joint design.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":"17 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12020047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human joint prostheses experience wear failure due to the complex interactions between Ultra-High-Molecular-Weight Polyethylene (UHMWPE) and Cobalt-Chromium-Molybdenum (CoCrMo). This study uses the wear classification to investigate the gradual and progressive abrasive wear mechanisms in UHMWPE. Pin-on-disc tests were conducted under simulated in vivo conditions, monitoring wear using Acoustic Emission (AE). Two Machine Learning (ML) frameworks were employed for wear classification: manual feature extraction with ML classifiers and a contrastive learning-based Convolutional Neural Network (CNN) with ML classifiers. The CNN-based feature extraction approach achieved superior classification performance (94% to 96%) compared to manual feature extraction (81% to 89%). The ML techniques enable accurate wear classification, aiding in understanding surface states and early failure detection. Real-time monitoring using AE sensors shows promise for interventions and improving prosthetic joint design.