Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Laichang Zhang, Y. M. Wang, Ilya Okulov, Hongmei Zhu, Chaolin Tan
{"title":"Recent Innovations in Laser Additive Manufacturing of Titanium Alloys","authors":"Jinlong Su, Fulin Jiang, Jie Teng, Lequn Chen, Ming Yan, Guillermo Requena, Laichang Zhang, Y. M. Wang, Ilya Okulov, Hongmei Zhu, Chaolin Tan","doi":"10.1088/2631-7990/ad2545","DOIUrl":null,"url":null,"abstract":"\n Titanium (Ti) alloys are widely used in frontier fields like aerospace and biomedical engineering. Laser additive manufacturing (LAM), as an innovative technology, is the key driver for the development of Ti alloys. Despite the significant advancements in LAM of Ti alloys, there remain challenges that need further research and development efforts. To recap the potential of LAM high-performance Ti alloy, this article systematically reviews LAM Ti alloys with up-to-date information on process, materials, and properties. Several feasible solutions to advance LAM Ti alloys were reviewed, including intelligent process parameters optimization, LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM. The auxiliary energy fields (e.g., thermal, acoustic, mechanical deformation and magnetic fields) that can be applied during LAM Ti alloys affect the melt pool dynamics and solidification behaviour, altering microstructures and mechanical performances. Different kinds of novel Ti alloys customized for LAM, like peritectic α-Ti, eutectoid (α+β)-Ti, hybrid (α+β)-Ti, isomorphous β-Ti and eutectic β-Ti alloys are reviewed in detail. Furthermore, machine learning in accelerating the LAM process optimization and new materials development is also outlooked. The review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys. In addition, the perspectives and further trends in LAM of Ti alloys are also highlighted.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad2545","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium (Ti) alloys are widely used in frontier fields like aerospace and biomedical engineering. Laser additive manufacturing (LAM), as an innovative technology, is the key driver for the development of Ti alloys. Despite the significant advancements in LAM of Ti alloys, there remain challenges that need further research and development efforts. To recap the potential of LAM high-performance Ti alloy, this article systematically reviews LAM Ti alloys with up-to-date information on process, materials, and properties. Several feasible solutions to advance LAM Ti alloys were reviewed, including intelligent process parameters optimization, LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM. The auxiliary energy fields (e.g., thermal, acoustic, mechanical deformation and magnetic fields) that can be applied during LAM Ti alloys affect the melt pool dynamics and solidification behaviour, altering microstructures and mechanical performances. Different kinds of novel Ti alloys customized for LAM, like peritectic α-Ti, eutectoid (α+β)-Ti, hybrid (α+β)-Ti, isomorphous β-Ti and eutectic β-Ti alloys are reviewed in detail. Furthermore, machine learning in accelerating the LAM process optimization and new materials development is also outlooked. The review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys. In addition, the perspectives and further trends in LAM of Ti alloys are also highlighted.
期刊介绍:
The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.