Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2024-05-22 DOI:10.1088/2631-7990/ad4f31
Shizhuo Zhang, Senlin Rao, Yunfan Li, Shuai Wang, Dingyue Sun, Feng Liu, G. Cheng
{"title":"Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz","authors":"Shizhuo Zhang, Senlin Rao, Yunfan Li, Shuai Wang, Dingyue Sun, Feng Liu, G. Cheng","doi":"10.1088/2631-7990/ad4f31","DOIUrl":null,"url":null,"abstract":"\n The advent of the Internet of Things (IoT) has catalyzed wireless communication's evolution towards multi-band and multi-area utilization. Notably, forthcoming sixth-generation (6G) communication standards, incorporating terahertz (THz) frequencies alongside existing gigahertz (GHz) modes, drive the need for a versatile multi-band electromagnetic wave absorbing and shielding material. This study introduces a pivotal advance via a new strategy, called Ultrafast Laser-Induced Thermal-Chemical Transformation and Encapsulation of Nanoalloys (LITEN). Employing Multivariate Metal−Organic Frameworks (MTV-MOFs), this approach tailors a porous, multifunctional graphene-encased magnetic nanoalloy (GEMN). By fine-tuning pulse laser parameters and material components, the resulting GEMN excels in low-frequency absorption and THz shielding. GEMN achieves a breakthrough with a minimal reflection loss of -50.6 dB at the optimal low-frequency C-band (around 4.98 GHz). Computational evidence reinforces GEMN’ efficacy in reducing radar cross sections. Additionally, GEMN demonstrates superior electromagnetic interference (EMI) shielding, reaching 98.92 dB in the THz band, with an average terahertz shielding of 55.47 dB (0.1~2THz). These accomplishments underscore GEMN's potential for 6G signal shielding. In summary, LITEN yields the remarkable EM wave controlling performance, holding promise in both GHz and THz frequency domains. This contribution heralds a paradigm shift in EM absorption and shielding materials, establishing a universally applicable framework with profound implications for future pursuits.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad4f31","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of the Internet of Things (IoT) has catalyzed wireless communication's evolution towards multi-band and multi-area utilization. Notably, forthcoming sixth-generation (6G) communication standards, incorporating terahertz (THz) frequencies alongside existing gigahertz (GHz) modes, drive the need for a versatile multi-band electromagnetic wave absorbing and shielding material. This study introduces a pivotal advance via a new strategy, called Ultrafast Laser-Induced Thermal-Chemical Transformation and Encapsulation of Nanoalloys (LITEN). Employing Multivariate Metal−Organic Frameworks (MTV-MOFs), this approach tailors a porous, multifunctional graphene-encased magnetic nanoalloy (GEMN). By fine-tuning pulse laser parameters and material components, the resulting GEMN excels in low-frequency absorption and THz shielding. GEMN achieves a breakthrough with a minimal reflection loss of -50.6 dB at the optimal low-frequency C-band (around 4.98 GHz). Computational evidence reinforces GEMN’ efficacy in reducing radar cross sections. Additionally, GEMN demonstrates superior electromagnetic interference (EMI) shielding, reaching 98.92 dB in the THz band, with an average terahertz shielding of 55.47 dB (0.1~2THz). These accomplishments underscore GEMN's potential for 6G signal shielding. In summary, LITEN yields the remarkable EM wave controlling performance, holding promise in both GHz and THz frequency domains. This contribution heralds a paradigm shift in EM absorption and shielding materials, establishing a universally applicable framework with profound implications for future pursuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光锻造纳米合金的转化和封装:开创从千兆赫到太赫兹的稳健宽带电磁波吸收和屏蔽技术
物联网(IoT)的出现推动了无线通信向多频段和多区域利用的方向发展。值得注意的是,即将推出的第六代(6G)通信标准将太赫兹(THz)频率与现有的千兆赫兹(GHz)模式结合在一起,从而推动了对多功能多频段电磁波吸收和屏蔽材料的需求。本研究通过一种名为 "超快激光诱导热化学转化和纳米合金封装(LITEN)"的新策略,介绍了这一关键性进展。这种方法采用多变量金属有机框架(MTV-MOFs),量身定制了一种多孔、多功能的石墨烯包覆磁性纳米合金(GEMN)。通过微调脉冲激光参数和材料成分,由此产生的 GEMN 在低频吸收和太赫兹屏蔽方面表现出色。GEMN 在最佳低频 C 波段(约 4.98 千兆赫)实现了突破性的最小反射损耗 -50.6 分贝。计算证据强化了 GEMN 在减少雷达截面方面的功效。此外,GEMN 还具有出色的电磁干扰(EMI)屏蔽能力,在太赫兹频段达到 98.92 dB,平均太赫兹屏蔽能力为 55.47 dB(0.1~2THz)。这些成就凸显了 GEMN 在 6G 信号屏蔽方面的潜力。总之,LITEN 具有显著的电磁波控制性能,在千兆赫和太赫兹频域都大有可为。这一贡献预示着电磁吸收和屏蔽材料的范式转变,建立了一个普遍适用的框架,对未来的研究具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Design and micromanufacturing technologies of focused piezoelectric ultrasound transducers for biomedical applications Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function Holistic and localized preparation methods for triboelectric sensors: principles, applications and perspectives Recent Advances in Fabricating High-Performance Triboelectric Nanogenerators via Modulating Surface Charge Density Laser-Forged Transformation and Encapsulation of Nanoalloys: Pioneering Robust Wideband Electromagnetic Wave Absorption and Shielding from GHz to THz
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1