AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-02-14 DOI:10.1002/aaai.12160
Amy McGovern, Imme Ebert-Uphoff, Elizabeth A. Barnes, Ann Bostrom, Mariana G. Cains, Phillip Davis, Julie L. Demuth, Dimitrios I. Diochnos, Andrew H. Fagg, Philippe Tissot, John K. Williams, Christopher D. Wirz
{"title":"AI2ES: The NSF AI Institute for Research on Trustworthy AI for Weather, Climate, and Coastal Oceanography","authors":"Amy McGovern,&nbsp;Imme Ebert-Uphoff,&nbsp;Elizabeth A. Barnes,&nbsp;Ann Bostrom,&nbsp;Mariana G. Cains,&nbsp;Phillip Davis,&nbsp;Julie L. Demuth,&nbsp;Dimitrios I. Diochnos,&nbsp;Andrew H. Fagg,&nbsp;Philippe Tissot,&nbsp;John K. Williams,&nbsp;Christopher D. Wirz","doi":"10.1002/aaai.12160","DOIUrl":null,"url":null,"abstract":"<p>The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user-informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"105-110"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12160","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12160","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) focuses on creating trustworthy AI for a variety of environmental and Earth science phenomena. AI2ES includes leading experts from AI, atmospheric and ocean science, risk communication, and education, who work synergistically to develop and test trustworthy AI methods that transform our understanding and prediction of the environment. Trust is a social phenomenon, and our integration of risk communication research across AI2ES activities provides an empirical foundation for developing user-informed, trustworthy AI. AI2ES also features activities to broaden participation and for workforce development that are fully integrated with AI2ES research on trustworthy AI, environmental science, and risk communication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI2ES:美国国家科学基金会人工智能研究所,研究天气、气候和沿海海洋学领域可信的人工智能
美国国家科学基金会人工智能研究所(NSF AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography, AI2ES)致力于为各种环境和地球科学现象创建可信的人工智能。AI2ES 的成员包括来自人工智能、大气和海洋科学、风险交流和教育领域的顶尖专家,他们协同合作,共同开发和测试可信任的人工智能方法,从而改变我们对环境的理解和预测。信任是一种社会现象,我们将风险交流研究融入到 AI2ES 的各项活动中,为开发用户知情、值得信赖的人工智能奠定了经验基础。AI2ES 还开展了各种活动,以扩大参与范围并促进劳动力发展,这些活动与 AI2ES 在可信人工智能、环境科学和风险交流方面的研究充分结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1