{"title":"Modelling and Simulation of Grid Connected Wind Turbine Induction Generator for Windfarm","authors":"A. Rathinavel, R. Ramya","doi":"10.4108/ew.5050","DOIUrl":null,"url":null,"abstract":"As the power generation sector moving towards the sustainability to achieve clean and renewable energy source, the wind power generation plays a vital role due to its abundance in nature. A big chunk of the decrease in carbon emission is a major attribute to the growth of the wind energy sector. Wind turbine production, structural development, logistics, maintenance and R&D are just some of the areas that could benefit from the growth of the wind energy industry. This brought out the attention of researchers of the electrical engineering to focus on wind power generation. It can be more efficient and cost-effective to operate wind turbines as a wind farm rather than individually. This has led to a surge in the construction of wind farms, both onshore and offshore wind farms. Therefore, in this paper, the study and analyse of single Induction generator with wind turbines and 33MW windfarm performance is presented. The simulation result demonstrates the efficiency of DFIG in producing energy at a constant wind speed, as well as its ability to regulate both active and reactive power at steady-state.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"5 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
As the power generation sector moving towards the sustainability to achieve clean and renewable energy source, the wind power generation plays a vital role due to its abundance in nature. A big chunk of the decrease in carbon emission is a major attribute to the growth of the wind energy sector. Wind turbine production, structural development, logistics, maintenance and R&D are just some of the areas that could benefit from the growth of the wind energy industry. This brought out the attention of researchers of the electrical engineering to focus on wind power generation. It can be more efficient and cost-effective to operate wind turbines as a wind farm rather than individually. This has led to a surge in the construction of wind farms, both onshore and offshore wind farms. Therefore, in this paper, the study and analyse of single Induction generator with wind turbines and 33MW windfarm performance is presented. The simulation result demonstrates the efficiency of DFIG in producing energy at a constant wind speed, as well as its ability to regulate both active and reactive power at steady-state.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.