{"title":"Phytotoxicity effect of a highly toxic isolate of Alternaria alternata metabolites from Iran","authors":"Atefeh Sedighi, Abbas Mohammadi","doi":"10.1016/j.toxcx.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><p><em>Alternaria</em> species produce several mycotoxins, such as alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin (ATX), tentoxin (TTX) and tenuazonic acid (TeA). This research aimed to isolate and identify mycotoxins from highly toxic <em>Alternaria alternata</em> (w19) and <em>A</em>. <em>tennuisima</em> isolates and their phytotoxicity effects. Fungal metabolites were extracted from 21-day cultures of <em>Alternaria</em> in a Czapek broth medium with the organic solvent chloroform/acetone and identified using the HPLC method. <em>Alternaria</em> metabolites were infiltrated <em>in vivo</em> into several plant leaves for phytotoxicity detection. The study investigated the impact of temperature, time, and metabolite concentration on phytotoxicity using the detached leaf infiltration technique. Five mycotoxins (TTX, TeA, ALT, AOH, and AME) were detected in <em>A. alternata</em> W19 isolate with 959.24, 102.03, 24.01, 9.04, and 2.44 ppm, respectively. <em>A. tennuisima</em> produce these toxins in a lower concentration. Infiltration of fungal metabolites induced leaf chlorosis and necrosis, which differs based on temperature, concentration and plant species. Based on our knowledge, this is the first report of <em>Alternaria</em> mycotoxins in Iran and a highly toxic isolate of <em>A. alternata</em> with rapid phytotoxicity on a wide range of susceptible hosts.</p></div>","PeriodicalId":37124,"journal":{"name":"Toxicon: X","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590171024000031/pdfft?md5=53ea310677808485ce94516569a05a41&pid=1-s2.0-S2590171024000031-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590171024000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alternaria species produce several mycotoxins, such as alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin (ATX), tentoxin (TTX) and tenuazonic acid (TeA). This research aimed to isolate and identify mycotoxins from highly toxic Alternaria alternata (w19) and A. tennuisima isolates and their phytotoxicity effects. Fungal metabolites were extracted from 21-day cultures of Alternaria in a Czapek broth medium with the organic solvent chloroform/acetone and identified using the HPLC method. Alternaria metabolites were infiltrated in vivo into several plant leaves for phytotoxicity detection. The study investigated the impact of temperature, time, and metabolite concentration on phytotoxicity using the detached leaf infiltration technique. Five mycotoxins (TTX, TeA, ALT, AOH, and AME) were detected in A. alternata W19 isolate with 959.24, 102.03, 24.01, 9.04, and 2.44 ppm, respectively. A. tennuisima produce these toxins in a lower concentration. Infiltration of fungal metabolites induced leaf chlorosis and necrosis, which differs based on temperature, concentration and plant species. Based on our knowledge, this is the first report of Alternaria mycotoxins in Iran and a highly toxic isolate of A. alternata with rapid phytotoxicity on a wide range of susceptible hosts.