{"title":"Circularity characterizes low-temperature district energy business models","authors":"Kristina Lygnerud, Nathalie Fransson","doi":"10.1016/j.segy.2024.100132","DOIUrl":null,"url":null,"abstract":"<div><p>This study has been undertaken to understand whether business models for heating, cooling and hot water can be categorized as circular. The study addresses the case of new, combustion-free technology by resorting to low-temperature district energy. Such systems necessitate smart infrastructure with efficient demand and supply matching ensuring the most cost-efficient use of heat supply over time. By studying 10 cases in a research project stretching across 3 years, it is identified that all cases display circular economy features, across the categories of reuse, reduce and recycle. The category of reverse logistics is only identified in 7 cases where energy is circulated within the networks. The integration of excess heat exhibits a particularly strong circularity case, covering all four circular economy dimensions. The circularity of low temperature district energy business models is, however, not free, but comes at a cost compared to conventional combustion-based technology, as new key resources and consequential investments are needed. The major conclusion of the study is that low temperature district energy business models are inherently circular, an important information for European policy making, fostering a circular energy transition.</p></div>","PeriodicalId":34738,"journal":{"name":"Smart Energy","volume":"13 ","pages":"Article 100132"},"PeriodicalIF":5.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666955224000029/pdfft?md5=8b5ad4ebc5766e2c6e1aa559e335fa36&pid=1-s2.0-S2666955224000029-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666955224000029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study has been undertaken to understand whether business models for heating, cooling and hot water can be categorized as circular. The study addresses the case of new, combustion-free technology by resorting to low-temperature district energy. Such systems necessitate smart infrastructure with efficient demand and supply matching ensuring the most cost-efficient use of heat supply over time. By studying 10 cases in a research project stretching across 3 years, it is identified that all cases display circular economy features, across the categories of reuse, reduce and recycle. The category of reverse logistics is only identified in 7 cases where energy is circulated within the networks. The integration of excess heat exhibits a particularly strong circularity case, covering all four circular economy dimensions. The circularity of low temperature district energy business models is, however, not free, but comes at a cost compared to conventional combustion-based technology, as new key resources and consequential investments are needed. The major conclusion of the study is that low temperature district energy business models are inherently circular, an important information for European policy making, fostering a circular energy transition.