Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY Integrative Biology Pub Date : 2024-01-23 DOI:10.1093/intbio/zyae002
Zeinab Nematollahi, Shiva Karimian, Ali Taghavirashidizadeh, Mohammad Darvishi, SeyedAbbas Pakmehr, Amin Erfan, Mohammad Javad Teimoury, Neda Mansouri, Iraj Alipourfard
{"title":"Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach.","authors":"Zeinab Nematollahi, Shiva Karimian, Ali Taghavirashidizadeh, Mohammad Darvishi, SeyedAbbas Pakmehr, Amin Erfan, Mohammad Javad Teimoury, Neda Mansouri, Iraj Alipourfard","doi":"10.1093/intbio/zyae002","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyae002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetes is a rising global metabolic disorder and leads to long-term consequences. As a multifactorial disease, the gene-associated mechanisms are important to know. This study applied a bioinformatics approach to explore the molecular underpinning of type 2 diabetes mellitus through differential gene expression analysis. We used microarray datasets GSE16415 and GSE29226 to identify differentially expressed genes between type 2 diabetes and normal samples using R software. Following that, using the STRING database, the protein-protein interaction network was constructed and further analyzed by Cytoscape software. The EnrichR database was used for Gene Ontology and pathway enrichment analysis to explore key pathways and functional annotations of hub genes. We also used miRTarBase and TargetScan databases to predict miRNAs targeting hub genes. We identified 21 hub genes in type 2 diabetes, some showing more significant changes in the PPI network. Our results revealed that GLUL, SLC32A1, PC, MAPK10, MAPT, and POSTN genes are more important in the PPI network and can be experimentally investigated as therapeutic targets. Hsa-miR-492 and hsa-miR-16-5p are suggested for diagnosis and prognosis by targeting GLUL, SLC32A1, PC, MAPK10, and MAPT genes involved in the insulin signaling pathway. Insight: Type 2 diabetes, as a rising global and multifactorial disorder, is important to know the gene-associated mechanisms. In an integrative bioinformatics analysis, we integrated different finding datasets to put together and find valuable diagnostic and prognostic hub genes and miRNAs. In contrast, genes, RNAs, and enzymes interact systematically in pathways. Using multiple databases and software, we identified differential expression between hub genes of diabetes and normal samples. We explored different protein-protein interaction networks, gene ontology, key pathway analysis, and predicted miRNAs that target hub genes. This study reported 21 significant hub genes and some miRNAs in the insulin signaling pathway for innovative and potential diagnostic and therapeutic purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2 型糖尿病中的枢纽基因、关键 miRNA 和相互作用分析:一种综合的硅学方法。
糖尿病是一种日益严重的全球性代谢性疾病,会导致长期后果。作为一种多因素疾病,了解与基因相关的机制非常重要。本研究采用生物信息学方法,通过差异基因表达分析探索 2 型糖尿病的分子基础。我们使用微阵列数据集 GSE16415 和 GSE29226,利用 R 软件识别 2 型糖尿病样本与正常样本之间的差异表达基因。随后,我们利用 STRING 数据库构建了蛋白质-蛋白质相互作用网络,并通过 Cytoscape 软件进行了进一步分析。EnrichR 数据库用于基因本体论和通路富集分析,以探索关键通路和枢纽基因的功能注释。我们还利用 miRTarBase 和 TargetScan 数据库预测了靶向枢纽基因的 miRNA。我们在 2 型糖尿病中发现了 21 个枢纽基因,其中一些在 PPI 网络中显示出更显著的变化。我们的结果显示,GLUL、SLC32A1、PC、MAPK10、MAPT 和 POSTN 基因在 PPI 网络中更为重要,可作为治疗靶点进行实验研究。通过靶向参与胰岛素信号通路的 GLUL、SLC32A1、PC、MAPK10 和 MAPT 基因,建议将 Hsa-miR-492 和 hsa-miR-16-5p 用于诊断和预后。启示2 型糖尿病是一种不断上升的全球性多因素疾病,了解与之相关的基因机制非常重要。在一项综合生物信息学分析中,我们整合了不同的发现数据集,以汇总并找到有价值的诊断和预后枢纽基因和 miRNA。相反,基因、RNA 和酶在通路中系统地相互作用。利用多个数据库和软件,我们确定了糖尿病和正常样本中枢基因的差异表达。我们探索了不同的蛋白-蛋白相互作用网络、基因本体、关键通路分析,并预测了靶向枢纽基因的 miRNA。本研究报告了胰岛素信号通路中的 21 个重要枢纽基因和一些 miRNA,具有创新性和潜在的诊断和治疗用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
期刊最新文献
Modeling Shiga toxin-induced human renal-specific microvascular injury. The cellular zeta potential: cell electrophysiology beyond the membrane. Correction to: Mimicking the topography of the epidermal-dermal interface with elastomer substrates. Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach. A Vicsek-type model of confined cancer cells with variable clustering affinities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1