Robert Someo Makomere, Lawrence Koech, Hilary Limo Rutto, Sammy Kiambi
{"title":"Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing.","authors":"Robert Someo Makomere, Lawrence Koech, Hilary Limo Rutto, Sammy Kiambi","doi":"10.1080/10934529.2024.2317670","DOIUrl":null,"url":null,"abstract":"<p><p>Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C-200 °C), slurry pH (4-12), stoichiometric ratio (0.5-2.5), slurry solid concentration (6%-14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (<i>R</i><sup>2</sup>) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":" ","pages":"1-14"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2024.2317670","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perceptron models have become integral tools for pattern recognition and classification problems in engineering fields. This study envisioned implementing artificial neural networks to forecast the performance of a mini-spray dryer for desulfurization activities. This work adopted k-fold cross-validation, a rigorous technique that evaluates model performance across multiple data segments. Several ANN models (21) were trained on data obtained from sulfation conditions, including sulfation temperature (120 °C-200 °C), slurry pH (4-12), stoichiometric ratio (0.5-2.5), slurry solid concentration (6%-14%) as the feed input and sulfur capture as the response. Three hundred synthetic datasets generated using the Gaussian noise data augmentation underwent a 10-fold cross-validation process before simulation on neural networks triggered by the logsig and tansig activation functions. The computation accuracy was further evaluated by altering the number of hidden cells from 2 to 10. The ANN architectures were assessed using statistical metrics such as mean square error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and the coefficient of determination (R2) techniques. Overall, error estimation suggests cross-validation and data augmentation are critical in efficient neural network generalization. The logsig function trained with 10 hidden cells presented closer data articulation when mapped onto actual values.
期刊介绍:
14 issues per year
Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.