Matija Koterle, Samo Beguš, Jure Pirman, Tadej Mežnaršič, Katja Gosar, Erik Zupanič, Rok Žitko, Peter Jeglič
{"title":"Mbit/s-range alkali vapour spin noise quantum random number generators","authors":"Matija Koterle, Samo Beguš, Jure Pirman, Tadej Mežnaršič, Katja Gosar, Erik Zupanič, Rok Žitko, Peter Jeglič","doi":"10.1140/epjqt/s40507-024-00221-5","DOIUrl":null,"url":null,"abstract":"<div><p>Spin noise based quantum random number generators first appeared in 2008 and have since then garnered little further interest, in part because their bit rate is limited by the transverse relaxation time <span>\\(T_{2}\\)</span> which for coated alkali vapour cells is typically in the kbit/s range. Here we present two advances. The first is an improved bit generation protocol that allows generating bits at rates exceeding <span>\\(1/T_{2}\\)</span> with only a minor increase of serial correlations. The second is a significant reduction of the time <span>\\(T_{2}\\)</span> itself by removing the coating, increasing the vapour temperature and introducing a magnetic-field gradient. In this way we managed to increase the bit generation rate to 1.04 Mbit/s. We analyse the quality of the generated random bits using entropy estimation and we discuss the extraction methods to obtain high-entropy bitstreams. We accurately predict the entropy output of the device backed with a stochastic model and numerical simulations.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00221-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00221-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Spin noise based quantum random number generators first appeared in 2008 and have since then garnered little further interest, in part because their bit rate is limited by the transverse relaxation time \(T_{2}\) which for coated alkali vapour cells is typically in the kbit/s range. Here we present two advances. The first is an improved bit generation protocol that allows generating bits at rates exceeding \(1/T_{2}\) with only a minor increase of serial correlations. The second is a significant reduction of the time \(T_{2}\) itself by removing the coating, increasing the vapour temperature and introducing a magnetic-field gradient. In this way we managed to increase the bit generation rate to 1.04 Mbit/s. We analyse the quality of the generated random bits using entropy estimation and we discuss the extraction methods to obtain high-entropy bitstreams. We accurately predict the entropy output of the device backed with a stochastic model and numerical simulations.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.