Eivind Kristen Osestad, Pekka Parviainen, Johannes Fiedler
{"title":"A novel gas sensing principle based on quantum fluctuations","authors":"Eivind Kristen Osestad, Pekka Parviainen, Johannes Fiedler","doi":"10.1140/epjqt/s40507-025-00341-6","DOIUrl":null,"url":null,"abstract":"<div><p>We present a model of a novel measurement scheme to detect small amounts of a gas species via the ground-state fluctuations of the electromagnetic field (dispersion forces) depending on the entire spectral properties of all objects.</p><p>Here, we describe an a theoretical measurement scheme of optically trapped nanoparticles in a hollow-core fibre. We calculate the effects of the gases on the thermal motion of the nanoparticles and present a neural network-based method for reconstructing the gas concentrations. We present an example of one possible setup capable of detecting concentrations of CO<sub>2</sub> down to 0.01 volume per cent with an accuracy of 1 ppm.</p><p>Reliable detection of small concentrations of specific molecules in a gas is essential for numerous applications such as security and environmental monitoring, medical tests, and production processes. Unlike other measurement schemes, such as surface plasmons or functionalised surfaces, this could allow fast, continuous monitoring and using small sample quantities, without influencing the probe or the sensor system.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00341-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00341-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a model of a novel measurement scheme to detect small amounts of a gas species via the ground-state fluctuations of the electromagnetic field (dispersion forces) depending on the entire spectral properties of all objects.
Here, we describe an a theoretical measurement scheme of optically trapped nanoparticles in a hollow-core fibre. We calculate the effects of the gases on the thermal motion of the nanoparticles and present a neural network-based method for reconstructing the gas concentrations. We present an example of one possible setup capable of detecting concentrations of CO2 down to 0.01 volume per cent with an accuracy of 1 ppm.
Reliable detection of small concentrations of specific molecules in a gas is essential for numerous applications such as security and environmental monitoring, medical tests, and production processes. Unlike other measurement schemes, such as surface plasmons or functionalised surfaces, this could allow fast, continuous monitoring and using small sample quantities, without influencing the probe or the sensor system.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.