{"title":"N-Doped Porous Carbon Nanofiber Mats for High-Performance Flexible Supercapacitor Electrodes","authors":"Baolei Shen, Xianjin Hu, Hai-Tao Ren, Jia-Horng Lin, Ching-Wen Lou, Ting-Ting Li","doi":"10.1002/ente.202301138","DOIUrl":null,"url":null,"abstract":"<p>Carbon materials are widely utilized as a versatile material for supercapacitors in energy storage for their extraordinary electrical conductivity, chemical stability, and cost-effectiveness. But achieving commercial viability still poses a significant challenge in improving the capacitance and energy density. To meet the requirements, an N-doped carbon nanofiber mat (porous carbon nanofiber (PCNF)) is prepared for free-standing electrodes with polyacrylonitrile and polyvinylpyrrolidone (PVP) electrostatically spun nanofibers as precursors. PVP is a pore-forming agent that decomposes on the carbon nanofibers during calcination to form pores, and the unique porous structure results in a remarkable performance of supercapacitor. The result shows that the PCNF30 exhibits high flexibility and electrochemical properties with a specific capacitance of 255.6 F g<sup>−1</sup> at 2 A g<sup>−1</sup> about 2.5 times higher than PCNF0 (105.3 F g<sup>−1</sup> at 2 A g<sup>−1</sup>) and satisfactory rate performance with only about 39.8% specific capacitance loss at 100 A g<sup>−1</sup>. In addition, the symmetrical supercapacitor of PCNF30//PCNF30 has high energy density, up to 8.85 Wh kg<sup>−1</sup> at 1.25 kW kg<sup>−1</sup>, and a 90.8% retention rate after undergoing 10 000 cycles. Those results suggest an efficient approach for PCNFs-based materials in flexible electronic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202301138","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon materials are widely utilized as a versatile material for supercapacitors in energy storage for their extraordinary electrical conductivity, chemical stability, and cost-effectiveness. But achieving commercial viability still poses a significant challenge in improving the capacitance and energy density. To meet the requirements, an N-doped carbon nanofiber mat (porous carbon nanofiber (PCNF)) is prepared for free-standing electrodes with polyacrylonitrile and polyvinylpyrrolidone (PVP) electrostatically spun nanofibers as precursors. PVP is a pore-forming agent that decomposes on the carbon nanofibers during calcination to form pores, and the unique porous structure results in a remarkable performance of supercapacitor. The result shows that the PCNF30 exhibits high flexibility and electrochemical properties with a specific capacitance of 255.6 F g−1 at 2 A g−1 about 2.5 times higher than PCNF0 (105.3 F g−1 at 2 A g−1) and satisfactory rate performance with only about 39.8% specific capacitance loss at 100 A g−1. In addition, the symmetrical supercapacitor of PCNF30//PCNF30 has high energy density, up to 8.85 Wh kg−1 at 1.25 kW kg−1, and a 90.8% retention rate after undergoing 10 000 cycles. Those results suggest an efficient approach for PCNFs-based materials in flexible electronic devices.