N-Doped Porous Carbon Nanofiber Mats for High-Performance Flexible Supercapacitor Electrodes

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-19 DOI:10.1002/ente.202301138
Baolei Shen, Xianjin Hu, Hai-Tao Ren, Jia-Horng Lin, Ching-Wen Lou, Ting-Ting Li
{"title":"N-Doped Porous Carbon Nanofiber Mats for High-Performance Flexible Supercapacitor Electrodes","authors":"Baolei Shen,&nbsp;Xianjin Hu,&nbsp;Hai-Tao Ren,&nbsp;Jia-Horng Lin,&nbsp;Ching-Wen Lou,&nbsp;Ting-Ting Li","doi":"10.1002/ente.202301138","DOIUrl":null,"url":null,"abstract":"<p>Carbon materials are widely utilized as a versatile material for supercapacitors in energy storage for their extraordinary electrical conductivity, chemical stability, and cost-effectiveness. But achieving commercial viability still poses a significant challenge in improving the capacitance and energy density. To meet the requirements, an N-doped carbon nanofiber mat (porous carbon nanofiber (PCNF)) is prepared for free-standing electrodes with polyacrylonitrile and polyvinylpyrrolidone (PVP) electrostatically spun nanofibers as precursors. PVP is a pore-forming agent that decomposes on the carbon nanofibers during calcination to form pores, and the unique porous structure results in a remarkable performance of supercapacitor. The result shows that the PCNF30 exhibits high flexibility and electrochemical properties with a specific capacitance of 255.6 F g<sup>−1</sup> at 2 A g<sup>−1</sup> about 2.5 times higher than PCNF0 (105.3 F g<sup>−1</sup> at 2 A g<sup>−1</sup>) and satisfactory rate performance with only about 39.8% specific capacitance loss at 100 A g<sup>−1</sup>. In addition, the symmetrical supercapacitor of PCNF30//PCNF30 has high energy density, up to 8.85 Wh kg<sup>−1</sup> at 1.25 kW kg<sup>−1</sup>, and a 90.8% retention rate after undergoing 10 000 cycles. Those results suggest an efficient approach for PCNFs-based materials in flexible electronic devices.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202301138","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon materials are widely utilized as a versatile material for supercapacitors in energy storage for their extraordinary electrical conductivity, chemical stability, and cost-effectiveness. But achieving commercial viability still poses a significant challenge in improving the capacitance and energy density. To meet the requirements, an N-doped carbon nanofiber mat (porous carbon nanofiber (PCNF)) is prepared for free-standing electrodes with polyacrylonitrile and polyvinylpyrrolidone (PVP) electrostatically spun nanofibers as precursors. PVP is a pore-forming agent that decomposes on the carbon nanofibers during calcination to form pores, and the unique porous structure results in a remarkable performance of supercapacitor. The result shows that the PCNF30 exhibits high flexibility and electrochemical properties with a specific capacitance of 255.6 F g−1 at 2 A g−1 about 2.5 times higher than PCNF0 (105.3 F g−1 at 2 A g−1) and satisfactory rate performance with only about 39.8% specific capacitance loss at 100 A g−1. In addition, the symmetrical supercapacitor of PCNF30//PCNF30 has high energy density, up to 8.85 Wh kg−1 at 1.25 kW kg−1, and a 90.8% retention rate after undergoing 10 000 cycles. Those results suggest an efficient approach for PCNFs-based materials in flexible electronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能柔性超级电容器电极的 N 掺杂多孔碳纳米纤维毡
碳材料具有非凡的导电性、化学稳定性和成本效益,被广泛用作超级电容器的多功能储能材料。但要实现商业可行性,在提高电容和能量密度方面仍面临巨大挑战。为了满足这些要求,我们以聚丙烯腈和聚乙烯吡咯烷酮(PVP)静电纺丝纳米纤维为前驱体,制备了用于独立电极的 N 掺杂碳纳米纤维毡(多孔碳纳米纤维,PCNF)。PVP 是一种孔隙形成剂,在煅烧过程中会在碳纳米纤维上分解形成孔隙,独特的多孔结构使超级电容器的性能显著提高。研究结果表明,PCNF30 具有很高的柔韧性和电化学性能,在 2 A g-1 时的比电容为 255.6 F g-1,是 PCNF0(在 2 A g-1 时的比电容为 105.3 F g-1)的 2.5 倍,并且具有令人满意的速率性能,在 100 A g-1 时的比电容损耗仅为 39.8%。此外,PCNF30//PCNF30 对称超级电容器的能量密度很高,在 1.25 kW kg-1 时可达 8.85 Wh kg-1,并且在经历 10 000 次循环后保持率为 90.8%。这些结果表明,在柔性电子设备中使用基于 PCNFs 的材料是一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1