Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-20 DOI:10.1039/D3MO00152K
Beste Turanli, Gizem Gulfidan, Ozge Onluturk Aydogan, Ceyda Kula, Gurudeeban Selvaraj and Kazim Yalcin Arga
{"title":"Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models","authors":"Beste Turanli, Gizem Gulfidan, Ozge Onluturk Aydogan, Ceyda Kula, Gurudeeban Selvaraj and Kazim Yalcin Arga","doi":"10.1039/D3MO00152K","DOIUrl":null,"url":null,"abstract":"<p >The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00152k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转化医学中的基因组尺度代谢模型:机器学习在提高模型有效性方面的现状和潜力
基因组尺度代谢模型(GEM)已成为系统级代谢研究的主要建模方法之一,并已在广泛的生物体和应用领域得到了广泛探索。由于基因组测序技术和现有生化数据的发展,可以为模式和非模式微生物以及多细胞生物(如人类和动物模型)重建 GEM。随着生物数据、新数学建模技术和自动 GEM 重建工具的发展,GEM 也将同步发展。高质量、特定背景的 GEM 是原始 GEM 的一个子集,其中去除了不活跃的反应,但保留了提取模型中的代谢功能,在模型生物中使用这些 GEM 和机器学习(ML)技术,可以在不久的将来提高它们在转化研究中的应用和有效性。在此,我们简要回顾了 GEM 的现状,讨论了 ML 方法在转化研究中更有效、更频繁地应用这些模型的潜在贡献,以及将 GEM 扩展到综合细胞模型的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1