{"title":"Callose deposition regulates differences in cotton aphid resistance among six watermelon varieties","authors":"Yongqian Zhang, Yue Zhang, Aiqing Chen, Ran Huo, Hongyu Yan, Zhiyong Zhang, Honggang Guo","doi":"10.1007/s10340-024-01757-2","DOIUrl":null,"url":null,"abstract":"<p>Cotton aphids (<i>Aphis gossypii</i> Glover) are important pests of cucurbit crops. Plant defenses at different cell layers, including the leaf surface, mesophyll cells, and phloem, are employed to defend aphids. Here, we assessed differences in aphid resistance among six watermelon varieties and elucidated the defense mechanisms underlying aphid-resistant/susceptible watermelon varieties. The population abundance, offspring number per female, and meantime of phloem-feeding (E2 phase) of aphids were the highest on XiNong (XN), followed by JingXin (JX), TianWang (TW), ZaoJia (ZJ), and MeiFuLai (MFL), and these parameters were the lowest on JinMeiDu (JMD). Further analyses showed that there was no correlation between the aphid resistance of six watermelon varieties and defenses at the leaf surface. For defenses at mesophyll cells, aphid infestation increased salicylic acid (SA) content at 48 h post-infestation (hpi) and ROS accumulation at 6 and 12 hpi in six watermelon varieties. For phloem defenses, aphid infestation increased callose content in JMD plants but decreased callose content in JX, TW, ZJ, MFL, and XN plants at 6, 12, 24, and 48 hpi. Moreover, callose deposition suppressed by 2-deoxy-d-glucose (2-DDG) neutralized the resistance of JMD plants and exacerbated the susceptibility of XN plants to aphids, which exhibited a higher population abundance and E2 phase time. Collectively, phloem defenses regulated by aphid-induced callose deposition were responsible for differences in aphid resistance among the watermelon varieties.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01757-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cotton aphids (Aphis gossypii Glover) are important pests of cucurbit crops. Plant defenses at different cell layers, including the leaf surface, mesophyll cells, and phloem, are employed to defend aphids. Here, we assessed differences in aphid resistance among six watermelon varieties and elucidated the defense mechanisms underlying aphid-resistant/susceptible watermelon varieties. The population abundance, offspring number per female, and meantime of phloem-feeding (E2 phase) of aphids were the highest on XiNong (XN), followed by JingXin (JX), TianWang (TW), ZaoJia (ZJ), and MeiFuLai (MFL), and these parameters were the lowest on JinMeiDu (JMD). Further analyses showed that there was no correlation between the aphid resistance of six watermelon varieties and defenses at the leaf surface. For defenses at mesophyll cells, aphid infestation increased salicylic acid (SA) content at 48 h post-infestation (hpi) and ROS accumulation at 6 and 12 hpi in six watermelon varieties. For phloem defenses, aphid infestation increased callose content in JMD plants but decreased callose content in JX, TW, ZJ, MFL, and XN plants at 6, 12, 24, and 48 hpi. Moreover, callose deposition suppressed by 2-deoxy-d-glucose (2-DDG) neutralized the resistance of JMD plants and exacerbated the susceptibility of XN plants to aphids, which exhibited a higher population abundance and E2 phase time. Collectively, phloem defenses regulated by aphid-induced callose deposition were responsible for differences in aphid resistance among the watermelon varieties.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.