A deep classifier of chaos and order in Hamiltonian systems of two degrees of freedom

Ippocratis D. Saltas, Georgios Lukes-Gerakopoulos
{"title":"A deep classifier of chaos and order in Hamiltonian systems of two degrees of freedom","authors":"Ippocratis D. Saltas, Georgios Lukes-Gerakopoulos","doi":"arxiv-2402.12359","DOIUrl":null,"url":null,"abstract":"Chaos is an intriguing phenomenon that can be found in an immense variate of\nsystems. Its detection and discrimination from its counterpart order poses an\ninteresting challenge. To address it, we present a deep classifier capable of\nclassifying chaos from order in the discretised dynamics of Hamiltonian systems\nof two degrees of freedom, through the machinery of Poincar\\'{e} maps. Our deep\nnetwork is based predominantly on a convolutional architecture, and generalises\nwith good accuracy on unseen datasets, thanks to the universal features of a\nperturbed pendulum learned by the deep network. We discuss in detail the\nsignificance and the preparation of our training set, and we showcase how our\ndeep network can be applied to the dynamics of geodesic motion in an\naxi-symmetric and stationary spacetime of a compact object deviating from the\nKerr black hole paradigm. Finally, we discuss current challenges and some\npromising future directions.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.12359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chaos is an intriguing phenomenon that can be found in an immense variate of systems. Its detection and discrimination from its counterpart order poses an interesting challenge. To address it, we present a deep classifier capable of classifying chaos from order in the discretised dynamics of Hamiltonian systems of two degrees of freedom, through the machinery of Poincar\'{e} maps. Our deep network is based predominantly on a convolutional architecture, and generalises with good accuracy on unseen datasets, thanks to the universal features of a perturbed pendulum learned by the deep network. We discuss in detail the significance and the preparation of our training set, and we showcase how our deep network can be applied to the dynamics of geodesic motion in an axi-symmetric and stationary spacetime of a compact object deviating from the Kerr black hole paradigm. Finally, we discuss current challenges and some promising future directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双自由度哈密顿系统中混沌与有序的深度分类器
混沌是一种有趣的现象,它存在于各种各样的系统中。检测混沌并将其与对应的有序区分开来是一项有趣的挑战。为了解决这个问题,我们提出了一种深度分类器,它能够通过 Poincar\'{e} 映射机制,将两个自由度的哈密尔顿系统离散动力学中的混沌与有序进行分类。我们的深度网络主要基于卷积架构,由于深度网络学习到了孔径扰动摆的普遍特征,因此在未见过的数据集上具有良好的通用性和准确性。我们详细讨论了训练集的意义和准备工作,并展示了我们的深度网络如何应用于偏离克尔黑洞范式的紧凑天体在轴对称和静止时空中的大地运动动力学。最后,我们讨论了当前面临的挑战和一些令人期待的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1