HepG2 exosomes coated luteolin nanoparticles remodeling hepatic stellate cells and combination with sorafenib for the treatment of hepatocellular carcinoma

IF 4.5 2区 工程技术 Q2 NANOSCIENCE & NANOTECHNOLOGY Cancer Nanotechnology Pub Date : 2024-02-22 DOI:10.1186/s12645-024-00253-7
Shengjie Ye, Xier Pan, Linghui Zou, Shuting Ni, Lei Zhang, Yanlong Hong, Kaili Hu
{"title":"HepG2 exosomes coated luteolin nanoparticles remodeling hepatic stellate cells and combination with sorafenib for the treatment of hepatocellular carcinoma","authors":"Shengjie Ye, Xier Pan, Linghui Zou, Shuting Ni, Lei Zhang, Yanlong Hong, Kaili Hu","doi":"10.1186/s12645-024-00253-7","DOIUrl":null,"url":null,"abstract":"Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and recurrence rate. The efficacy of the first-line drug sorafenib is impeded by drug resistance, which is closely related to activated hepatic stellate cells (HSCs). The natural product luteolin is good at alleviating the activation of HSC. However, its clinical application is limited to poor solubility, bioavailability and lacking of HSCs targeting effects. This study aims to construct luteolin-loaded biomimetic nanoparticles based on HepG2 exosomes for targeting HSCs and enhancing the therapeutic effects of sorafenib on HCC. The HepG2 exosomes extracted were identified by size distribution, Zeta potential and characteristic proteins. Luteolin-loaded polylactic acid-glycolic acid (PLGA) nanoparticles (Lut-NPs) were prepared and wrapped by HepG2 exosomes to form biomimetic nanoparticles (Exo-Lut-NPs). A HepG2 cell sorafenib-resistant model induced by LX2 cell conditioned medium (CM) was established to evaluate the effects of Exo-Lut-NPs on reversing sorafenib-resistant in vitro. And the combined therapeutic effects of Exo-Lut-NPs with sorafenib were evaluated on a HepG2/LX2 subcutaneous xenograft tumor model in vivo. The particle size, drug loading capacity and encapsulation efficiency of Exo-Lut-NPs were 165 ± 10 nm, 2.6 ± 0.2% and 56.9 ± 4.3%, respectively. The in vitro HepG2 sorafenib-resistant model was induced by the CM of LX2 cells, and the results showed that Exo-Lut-NPs partially reversed the sorafenib resistance of HepG2 cells by affecting the CM of LX2 cells. The combined therapy of Exo-Lut-NPs with sorafenib markedly suppressed tumor growth in a HepG2/LX2 subcutaneous xenograft tumor model. This study suggests that the Exo-Lut-NP is a novel and promising biomimetic delivery system which can combine with sorafenib for HCC therapy.","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":"63 2 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12645-024-00253-7","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is a common malignant tumor with high mortality and recurrence rate. The efficacy of the first-line drug sorafenib is impeded by drug resistance, which is closely related to activated hepatic stellate cells (HSCs). The natural product luteolin is good at alleviating the activation of HSC. However, its clinical application is limited to poor solubility, bioavailability and lacking of HSCs targeting effects. This study aims to construct luteolin-loaded biomimetic nanoparticles based on HepG2 exosomes for targeting HSCs and enhancing the therapeutic effects of sorafenib on HCC. The HepG2 exosomes extracted were identified by size distribution, Zeta potential and characteristic proteins. Luteolin-loaded polylactic acid-glycolic acid (PLGA) nanoparticles (Lut-NPs) were prepared and wrapped by HepG2 exosomes to form biomimetic nanoparticles (Exo-Lut-NPs). A HepG2 cell sorafenib-resistant model induced by LX2 cell conditioned medium (CM) was established to evaluate the effects of Exo-Lut-NPs on reversing sorafenib-resistant in vitro. And the combined therapeutic effects of Exo-Lut-NPs with sorafenib were evaluated on a HepG2/LX2 subcutaneous xenograft tumor model in vivo. The particle size, drug loading capacity and encapsulation efficiency of Exo-Lut-NPs were 165 ± 10 nm, 2.6 ± 0.2% and 56.9 ± 4.3%, respectively. The in vitro HepG2 sorafenib-resistant model was induced by the CM of LX2 cells, and the results showed that Exo-Lut-NPs partially reversed the sorafenib resistance of HepG2 cells by affecting the CM of LX2 cells. The combined therapy of Exo-Lut-NPs with sorafenib markedly suppressed tumor growth in a HepG2/LX2 subcutaneous xenograft tumor model. This study suggests that the Exo-Lut-NP is a novel and promising biomimetic delivery system which can combine with sorafenib for HCC therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HepG2外泌体包裹的木犀草素纳米颗粒重塑肝星状细胞并与索拉非尼联合治疗肝细胞癌
肝细胞癌(HCC)是一种常见的恶性肿瘤,死亡率和复发率都很高。一线药物索拉非尼的疗效受到耐药性的阻碍,而耐药性与活化的肝星状细胞(HSCs)密切相关。天然产物木犀草素能有效缓解造血干细胞的活化。然而,由于其溶解性和生物利用度较差,且缺乏靶向 HSCs 的作用,其临床应用受到限制。本研究旨在构建基于HepG2外泌体的叶黄素负载型仿生纳米颗粒,以靶向造血干细胞,增强索拉非尼对HCC的治疗效果。研究人员通过粒度分布、Zeta电位和特征蛋白对提取的HepG2外泌体进行了鉴定。制备了负载木犀草素的聚乳酸-乙醇酸(PLGA)纳米颗粒(Lut-NPs),并用HepG2外泌体包裹形成仿生物纳米颗粒(Exo-Lut-NPs)。建立了由LX2细胞条件培养基(CM)诱导的HepG2细胞索拉非尼耐药模型,以评估Exo-Lut-NPs在体外逆转索拉非尼耐药的效果。并在体内HepG2/LX2皮下异种移植肿瘤模型上评估了Exo-Lut-NPs与索拉非尼的联合治疗效果。Exo-Lut-NPs的粒径、载药量和包封效率分别为165 ± 10 nm、2.6 ± 0.2%和56.9 ± 4.3%。通过LX2细胞的CM诱导体外HepG2索拉非尼耐药模型,结果表明Exo-Lut-NPs通过影响LX2细胞的CM部分逆转了HepG2细胞的索拉非尼耐药。在HepG2/LX2皮下异种移植肿瘤模型中,Exo-Lut-NPs与索拉非尼联合治疗可显著抑制肿瘤生长。这项研究表明,Exo-Lut-NP 是一种新型、有前景的生物仿生递送系统,可与索拉非尼联合用于 HCC 治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Nanotechnology
Cancer Nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍: Aim: Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas. Scope: Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.
期刊最新文献
A biocompatible nanoformulation of curcumin analogue and curd exosomes targeting EphA2 signalling cascade in head and neck cancer pH-sensitive nanoformulation of acetyl-11-keto-beta-boswellic acid (AKBA) as a potential antiproliferative agent in colon adenocarcinoma (in vitro and in vivo) Enhanced chemotherapy response in hepatocellular carcinoma: synergistic effects of miR-122 and doxorubicin co-delivery system inducing apoptosis and DNA damage Green-synthesized silver nanoparticles from peel extract of pumpkin as a potent radiosensitizer against triple-negative breast cancer (TNBC) High-frequency ultrasound-assisted drug delivery of chia, cress, and flax conjugated hematite iron oxide nanoparticle for sono-photodynamic lung cancer treatment in vitro and in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1