Thermal Analysis of Building Roofs with Latent Heat Storage for Reduction in Energy Consumption and CO2 Emissions: An Experimental and Numerical Research

IF 1.5 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Advances in Civil Engineering Pub Date : 2024-02-19 DOI:10.1155/2024/6676188
Erdem Cuce, Saboor Shaik, Abin Roy, Chelliah Arumugam, Asif Afzal, Pinar Mert Cuce, Aritra Ghosh, Tabish Alam, Sharmas Vali Shaik
{"title":"Thermal Analysis of Building Roofs with Latent Heat Storage for Reduction in Energy Consumption and CO2 Emissions: An Experimental and Numerical Research","authors":"Erdem Cuce, Saboor Shaik, Abin Roy, Chelliah Arumugam, Asif Afzal, Pinar Mert Cuce, Aritra Ghosh, Tabish Alam, Sharmas Vali Shaik","doi":"10.1155/2024/6676188","DOIUrl":null,"url":null,"abstract":"In green energy buildings, air conditioning charges can be lowered through careful planning of the building’s envelope. This article investigates several strategically designed phase change material (PCM) roof envelopes for savings on air conditioning prices, CO<sub>2</sub> emission abatement, and payback timeframes in hot–arid and warm-temperate climates, taking into account unsteady heat transfer characteristics, cooling, and heating degree–hours. This is accomplished by using six different PCMs–RCC (reinforced cement concrete) roof envelope cases (RCC roof with PCM layer on the outer side, RCC roof with PCM layer on the center (middle), RCC roof with PCM layer on the inside, RCC roof with PCM layers placed on the outside and center, RCC roof with PCM layers placed on the center and inside, and RCC roof with PCM layers placed on the outer side and inside) with three PCMs (FS29 (form stable mixture), HS29 (hydrated salt), and OM29 (organic mixture)). PCM thermophysical characteristics are experimentally measured. The analytical results are experimentally validated. In hot–arid and warm-temperate regions, the layer of PCM installed on the outside of the RCC with HS29 saved the most on air conditioning expenses, at 6.29 and 6.61 $/m<sup>2</sup>, respectively. They also reported the greatest carbon mitigation of 300.55 kg of CO<sub>2</sub>/year and 281.58 kg of CO<sub>2</sub>/year with the faster payback periods. PCM roof envelopes are the most energy-efficient option for green buildings.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6676188","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In green energy buildings, air conditioning charges can be lowered through careful planning of the building’s envelope. This article investigates several strategically designed phase change material (PCM) roof envelopes for savings on air conditioning prices, CO2 emission abatement, and payback timeframes in hot–arid and warm-temperate climates, taking into account unsteady heat transfer characteristics, cooling, and heating degree–hours. This is accomplished by using six different PCMs–RCC (reinforced cement concrete) roof envelope cases (RCC roof with PCM layer on the outer side, RCC roof with PCM layer on the center (middle), RCC roof with PCM layer on the inside, RCC roof with PCM layers placed on the outside and center, RCC roof with PCM layers placed on the center and inside, and RCC roof with PCM layers placed on the outer side and inside) with three PCMs (FS29 (form stable mixture), HS29 (hydrated salt), and OM29 (organic mixture)). PCM thermophysical characteristics are experimentally measured. The analytical results are experimentally validated. In hot–arid and warm-temperate regions, the layer of PCM installed on the outside of the RCC with HS29 saved the most on air conditioning expenses, at 6.29 and 6.61 $/m2, respectively. They also reported the greatest carbon mitigation of 300.55 kg of CO2/year and 281.58 kg of CO2/year with the faster payback periods. PCM roof envelopes are the most energy-efficient option for green buildings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少能源消耗和二氧化碳排放的潜热存储建筑屋顶热分析:实验与数值研究
在绿色能源建筑中,通过对建筑围护结构的精心规划,可以降低空调费用。本文研究了几种经过战略性设计的相变材料(PCM)屋顶围护结构,考虑到不稳定的传热特性、制冷和制热度小时数,研究了在炎热干旱和温暖温带气候条件下如何节省空调费用、减少二氧化碳排放以及投资回收期。为此,我们使用了六种不同的 PCM-RCC(钢筋水泥混凝土)屋顶围护结构案例(外侧有 PCM 层的 RCC 屋顶、中间(中间)有 PCM 层的 RCC 屋顶、内侧有 PCM 层的 RCC 屋顶)、内侧有 PCM 层的 RCC 屋顶、PCM 层位于外侧和中间的 RCC 屋顶、PCM 层位于中间和内侧的 RCC 屋顶以及 PCM 层位于外侧和内侧的 RCC 屋顶)。实验测量了 PCM 的热物理特性。实验验证了分析结果。在炎热干旱地区和温暖湿润地区,安装在 RCC 外侧的含 HS29 的 PCM 层节省的空调费用最多,分别为 6.29 美元/平方米和 6.61 美元/平方米。他们还报告了最大的碳减排量,分别为 300.55 千克二氧化碳/年和 281.58 千克二氧化碳/年,且投资回收期更短。PCM 屋顶围护结构是绿色建筑最节能的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Civil Engineering
Advances in Civil Engineering Engineering-Civil and Structural Engineering
CiteScore
4.00
自引率
5.60%
发文量
612
审稿时长
15 weeks
期刊介绍: Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged. Subject areas include (but are by no means limited to): -Structural mechanics and engineering- Structural design and construction management- Structural analysis and computational mechanics- Construction technology and implementation- Construction materials design and engineering- Highway and transport engineering- Bridge and tunnel engineering- Municipal and urban engineering- Coastal, harbour and offshore engineering-- Geotechnical and earthquake engineering Engineering for water, waste, energy, and environmental applications- Hydraulic engineering and fluid mechanics- Surveying, monitoring, and control systems in construction- Health and safety in a civil engineering setting. Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils Application of Fully Connected Neural Network-Based PyTorch in Concrete Compressive Strength Prediction Influence of Mechanical and Microscopic Properties of Red Sandstone Modified by Different Solid Waste Materials A Comparative Study of Subsurface Profile Using Bore Log Data and Geophysical Method at Mandideep Region, India Mapping Longitudinal and Transverse Displacements of a Dam Crest Based on the Synergy of High-Precision Remote Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1