Opu Chandra Debanath, Md. Aftabur Rahman, Sultan Mohammad Farook, Mohammed Russedul Islam
{"title":"Application of Ecofriendly Geopolymer Binder to Enhance the Strength and Swelling Properties of Expansive Soils","authors":"Opu Chandra Debanath, Md. Aftabur Rahman, Sultan Mohammad Farook, Mohammed Russedul Islam","doi":"10.1155/2024/9910728","DOIUrl":null,"url":null,"abstract":"The expansive soil swells significantly in the presence of moisture, which often leads to the failure of superstructures. Conventional stabilization techniques are applied in many instances, although environmental issues are of significant concern for such stabilization. Keeping this in mind, an attempt is made to apply a new approach for stabilizing different types of expansive soils, treated with a nonconventional binder geopolymer that utilizes fly ash as the main ingredient. A series of laboratory experiments are run to determine the engineering properties of treated soils with varying percentages of geopolymer from 0% to 30%. The experimental investigation involved tests such as unconfined compressive strength, compaction, Atterberg limits, and swelling pressure. Significant strength development occurs with increasing percentages of geopolymer, and their swelling pressures decrease considerably. Additionally, a series of California Bearing Ratio (CBR) tests were undertaken to assess the suitability for road construction. The optimum dosage of the stabilizing agent is found to be 20%, as justified by studies in the literature. Furthermore, scanning electronic microscope (SEM) images of the treated samples revealed microstructural changes in the soil matrix, which strongly correlate with the improvement of strength and swelling behavior. Hence, based on our experimental results, 20% geopolymer content is sufficient for enhancing the engineering properties of expansive soils, and the treated soils can directly be used as subgrade or sub-base material.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/9910728","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The expansive soil swells significantly in the presence of moisture, which often leads to the failure of superstructures. Conventional stabilization techniques are applied in many instances, although environmental issues are of significant concern for such stabilization. Keeping this in mind, an attempt is made to apply a new approach for stabilizing different types of expansive soils, treated with a nonconventional binder geopolymer that utilizes fly ash as the main ingredient. A series of laboratory experiments are run to determine the engineering properties of treated soils with varying percentages of geopolymer from 0% to 30%. The experimental investigation involved tests such as unconfined compressive strength, compaction, Atterberg limits, and swelling pressure. Significant strength development occurs with increasing percentages of geopolymer, and their swelling pressures decrease considerably. Additionally, a series of California Bearing Ratio (CBR) tests were undertaken to assess the suitability for road construction. The optimum dosage of the stabilizing agent is found to be 20%, as justified by studies in the literature. Furthermore, scanning electronic microscope (SEM) images of the treated samples revealed microstructural changes in the soil matrix, which strongly correlate with the improvement of strength and swelling behavior. Hence, based on our experimental results, 20% geopolymer content is sufficient for enhancing the engineering properties of expansive soils, and the treated soils can directly be used as subgrade or sub-base material.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.