Microscale 3-D Capacitance Tomography with a CMOS Sensor Array.

Manar Abdelatty, Joseph Incandela, Kangping Hu, Joseph W Larkin, Sherief Reda, Jacob K Rosenstein
{"title":"Microscale 3-D Capacitance Tomography with a CMOS Sensor Array.","authors":"Manar Abdelatty, Joseph Incandela, Kangping Hu, Joseph W Larkin, Sherief Reda, Jacob K Rosenstein","doi":"10.1109/biocas58349.2023.10388576","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical capacitance tomography (ECT) is a non-optical imaging technique in which a map of the interior permittivity of a volume is estimated by making capacitance measurements at its boundary and solving an inverse problem. While previous ECT demonstrations have often been at centimeter scales, ECT is not limited to macroscopic systems. In this paper, we demonstrate ECT imaging of polymer microspheres and bacterial biofilms using a CMOS microelectrode array, achieving spatial resolution of 10 microns. Additionally, we propose a deep learning architecture and an improved multi-objective training scheme for reconstructing out-of-plane permittivity maps from the sensor measurements. Experimental results show that the proposed approach is able to resolve microscopic 3-D structures, achieving 91.5% prediction accuracy on the microsphere dataset and 82.7% on the biofilm dataset, including an average of 4.6% improvement over baseline computational methods.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2023 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/biocas58349.2023.10388576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical capacitance tomography (ECT) is a non-optical imaging technique in which a map of the interior permittivity of a volume is estimated by making capacitance measurements at its boundary and solving an inverse problem. While previous ECT demonstrations have often been at centimeter scales, ECT is not limited to macroscopic systems. In this paper, we demonstrate ECT imaging of polymer microspheres and bacterial biofilms using a CMOS microelectrode array, achieving spatial resolution of 10 microns. Additionally, we propose a deep learning architecture and an improved multi-objective training scheme for reconstructing out-of-plane permittivity maps from the sensor measurements. Experimental results show that the proposed approach is able to resolve microscopic 3-D structures, achieving 91.5% prediction accuracy on the microsphere dataset and 82.7% on the biofilm dataset, including an average of 4.6% improvement over baseline computational methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 CMOS 传感器阵列的微米级三维电容断层扫描。
电容层析成像(ECT)是一种非光学成像技术,通过在边界进行电容测量并求解逆问题,可以估算出一个体积的内部介电常数图。虽然以前的 ECT 演示通常是在厘米尺度上进行的,但 ECT 并不局限于宏观系统。在本文中,我们利用 CMOS 微电极阵列演示了聚合物微球和细菌生物膜的 ECT 成像,实现了 10 微米的空间分辨率。此外,我们还提出了一种深度学习架构和改进的多目标训练方案,用于根据传感器测量结果重建面外介电常数图。实验结果表明,所提出的方法能够解析微观三维结构,在微球数据集上实现了 91.5% 的预测准确率,在生物膜数据集上实现了 82.7% 的预测准确率,与基线计算方法相比平均提高了 4.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microscale 3-D Capacitance Tomography with a CMOS Sensor Array. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. Programmable Electrochemical Stimulation on a Large-Scale CMOS Microelectrode Array. Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface. Estimating Intrinsic Manifold Dimensionality to Classify Task-Related Information in Human and Non-Human Primate Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1