ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7

Baozhu Li , Runan Liu , Jiong Liu , Hui Zhang , Yanan Tian , Tingting Chen , Jiaxing Li , Fuhang Jiao , Tengfei Jia , Yingxue Li , Xiangyu Zhang , Han Li , Xiang Zhao , David W. Galbraith , Chun-peng Song
{"title":"ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7","authors":"Baozhu Li ,&nbsp;Runan Liu ,&nbsp;Jiong Liu ,&nbsp;Hui Zhang ,&nbsp;Yanan Tian ,&nbsp;Tingting Chen ,&nbsp;Jiaxing Li ,&nbsp;Fuhang Jiao ,&nbsp;Tengfei Jia ,&nbsp;Yingxue Li ,&nbsp;Xiangyu Zhang ,&nbsp;Han Li ,&nbsp;Xiang Zhao ,&nbsp;David W. Galbraith ,&nbsp;Chun-peng Song","doi":"10.1016/j.ncrops.2024.100012","DOIUrl":null,"url":null,"abstract":"<div><p>The growth and yield of essential crops, including maize, are significantly endangered by drought. Closing stomata, limiting water dissipation, and improving water use efficiency are important components of plant drought responses. In our study, the MYB-like transcription factor ZmMYB56, expressed in maize guard cells, played important roles in regulating stomatal closure and drought tolerance. Mutations in ZmMYB56 triggered elevated stomatal conductance, rapid water loss in isolated leaves, and severe drought sensitivity in plants. ZmMYB56 possesses transcriptional activation activity, and is expressed specifically in stomatal guard cells. As an R2R3 transcription factor, ZmMYB56 can bind the cis-acting element on the <em>ZmTOM7</em> promoter sequence, activating its expression. Correspondingly, the <em>ZmTOM7</em> transcript level is downregulated in <em>Zmmyb56</em> seedlings. Transgenic <em>Arabidopsis</em> plants overexpressing <em>ZmTOM7</em> exhibit limited stomatal conductance and elevated drought tolerance, while the <em>ZmTOM7</em> mutation is linked to higher stomatal conductance and substantial drought sensitivity in maize seedlings. According to these findings, we conclude that <em>ZmTOM7</em> operates as a key target gene of ZmMYB56 and is involved in ZmMYB56-regulated stomatal closure and maize drought tolerance. Our findings regarding the functional mechanisms of maize ZmMYB56 transcription factors in stomatal closure and drought stress enable a potential genetic resource for improving the drought resistance of maize.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000025/pdfft?md5=2bf3c21d86a8bb3b2612f73ec42fe379&pid=1-s2.0-S2949952624000025-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growth and yield of essential crops, including maize, are significantly endangered by drought. Closing stomata, limiting water dissipation, and improving water use efficiency are important components of plant drought responses. In our study, the MYB-like transcription factor ZmMYB56, expressed in maize guard cells, played important roles in regulating stomatal closure and drought tolerance. Mutations in ZmMYB56 triggered elevated stomatal conductance, rapid water loss in isolated leaves, and severe drought sensitivity in plants. ZmMYB56 possesses transcriptional activation activity, and is expressed specifically in stomatal guard cells. As an R2R3 transcription factor, ZmMYB56 can bind the cis-acting element on the ZmTOM7 promoter sequence, activating its expression. Correspondingly, the ZmTOM7 transcript level is downregulated in Zmmyb56 seedlings. Transgenic Arabidopsis plants overexpressing ZmTOM7 exhibit limited stomatal conductance and elevated drought tolerance, while the ZmTOM7 mutation is linked to higher stomatal conductance and substantial drought sensitivity in maize seedlings. According to these findings, we conclude that ZmTOM7 operates as a key target gene of ZmMYB56 and is involved in ZmMYB56-regulated stomatal closure and maize drought tolerance. Our findings regarding the functional mechanisms of maize ZmMYB56 transcription factors in stomatal closure and drought stress enable a potential genetic resource for improving the drought resistance of maize.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ZmMYB56 通过 ZmTOM7 的转录调控玉米幼苗的气孔关闭和耐旱性
干旱严重危害包括玉米在内的主要作物的生长和产量。关闭气孔、限制水分散失和提高水分利用效率是植物干旱响应的重要组成部分。在我们的研究中,玉米保卫细胞中表达的 MYB 样转录因子 ZmMYB56 在调节气孔关闭和耐旱性方面发挥了重要作用。ZmMYB56的突变会导致气孔导度升高、离体叶片水分快速流失以及植物对干旱的严重敏感性。ZmMYB56 具有转录激活活性,并在气孔保卫细胞中特异表达。作为一个 R2R3 转录因子,ZmMYB56 能与 ZmTOM7 启动子序列上的顺式作用元件结合,激活其表达。相应地,Zmmyb56幼苗中 ZmTOM7 的转录水平会下调。过表达 ZmTOM7 的转基因拟南芥植株表现出有限的气孔导度和较高的耐旱性,而 ZmTOM7 突变与玉米幼苗较高的气孔导度和较强的干旱敏感性有关。根据这些发现,我们认为 ZmTOM7 是 ZmMYB56 的一个关键靶基因,参与了 ZmMYB56 调控的气孔关闭和玉米耐旱性。我们关于玉米 ZmMYB56 转录因子在气孔关闭和干旱胁迫中的功能机制的发现为提高玉米的抗旱性提供了潜在的遗传资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meiosis in plants: From understanding to manipulation Perspectives on developing natural colored cotton through carotenoid biofortification Genome-wide characterization, identification, and isolation of auxin response factor (ARF) gene family in maize Precise control of falling flowers and fruits is a key part of improving quality and efficiency Molecular mechanisms of rice seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1