Advances and prospects of plant mitochondrial pentatricopeptide repeat proteins in post-transcriptional processing

Feng Sun , Ya-Feng Zhang , Pan-Pan Jiang , Yue Li , Shi-Kai Cao , Chun-Hui Xu , Yong Wang
{"title":"Advances and prospects of plant mitochondrial pentatricopeptide repeat proteins in post-transcriptional processing","authors":"Feng Sun ,&nbsp;Ya-Feng Zhang ,&nbsp;Pan-Pan Jiang ,&nbsp;Yue Li ,&nbsp;Shi-Kai Cao ,&nbsp;Chun-Hui Xu ,&nbsp;Yong Wang","doi":"10.1016/j.ncrops.2024.100063","DOIUrl":null,"url":null,"abstract":"<div><div>The pentatricopeptide repeat (PPR) protein is integral to various post-transcriptional processing functions of precursor RNA in plant mitochondria and plastids. It plays a significant role in seed development, plant growth and development, and male infertility, thereby influencing crop yield and hybrid breeding. Over the past 30 years, significant progress has been achieved in elucidating the molecular functions and mechanisms of PPR proteins in various species, including Arabidopsis, maize, rice, and moss. Here, we provide a comprehensive summary of advances in the role of plant mitochondrial PPRs in post-transcriptional regulation, focusing on RNA editing, intron splicing, stability of 3′ untranslated regions (UTRs), maturation of 5' UTRs as well as RNA translation. Additionally, we discuss the potential applications of engineered PPR proteins in crop breeding and outline future research directions to resolve the outstanding questions surrounding the molecular mechanisms of PPR proteins.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pentatricopeptide repeat (PPR) protein is integral to various post-transcriptional processing functions of precursor RNA in plant mitochondria and plastids. It plays a significant role in seed development, plant growth and development, and male infertility, thereby influencing crop yield and hybrid breeding. Over the past 30 years, significant progress has been achieved in elucidating the molecular functions and mechanisms of PPR proteins in various species, including Arabidopsis, maize, rice, and moss. Here, we provide a comprehensive summary of advances in the role of plant mitochondrial PPRs in post-transcriptional regulation, focusing on RNA editing, intron splicing, stability of 3′ untranslated regions (UTRs), maturation of 5' UTRs as well as RNA translation. Additionally, we discuss the potential applications of engineered PPR proteins in crop breeding and outline future research directions to resolve the outstanding questions surrounding the molecular mechanisms of PPR proteins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advances and prospects of plant mitochondrial pentatricopeptide repeat proteins in post-transcriptional processing The bioinformatic tools, characteristics, biological functions and molecular mechanisms associated with plant circular RNA FREE1 condensates mediate energy-independent membrane remodeling via wetting Facing chilling, kinase-transcription factors relay cold tolerance signals Epigenomic studies in sorghum reveal differential enrichment of multiple histone marks at clade A PP2C genes in response to drought
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1