Peng Qiao, Chen Ma, Chang-Jiang Daun, Hao Lei, Heng Zhao, Jun He
{"title":"Vehicle–Bridge Interaction Dynamic Analysis of Continuous Rigid Frame Composite Box Girder Bridge with Corrugated Steel Webs under Seismic Excitation","authors":"Peng Qiao, Chen Ma, Chang-Jiang Daun, Hao Lei, Heng Zhao, Jun He","doi":"10.1155/2024/3870669","DOIUrl":null,"url":null,"abstract":"To study the vehicle–bridge interaction (VBI) of highway bridges under seismic excitation, a vehicle–bridge couple analysis method based on Ansys is proposed. The 1/2 vehicle model and space beam element model were established to analyze the VBI response of Lanzhou Xiaoshagou bridge. The self-excited excitation of the system is represented by road surface irregularity randomness, while the external excitation is represented by an earthquake. The impact of seismic types, seismic direction, seismic intensity, vehicle speed, and road surface irregularity on the bridge vibration under the vehicle–bridge coupling during an earthquake is thoroughly analyzed. The results reveal that the type of earthquake significantly influences the dynamic response of the bridge, showing a minimum difference of 31.4%. The intensity of the earthquake is positively correlated with the dynamic response of the bridge. Longitudinal and vertical earthquakes have a more noticeable effect on the bridge’s vertical vibration compared to lateral earthquakes. The ratio of the bridge response under vertical or longitudinal seismic excitation to the response of lateral earthquakes ranges from 1.50 to 26.61. Vehicle speed, road irregularity grade, and randomness have a negligible impact on the dynamic response of vehicle–bridge interaction under an earthquake, accounting for less than 3%. These findings indicate that the analysis of earthquake-bridge vibration can simplify the VBI analysis for continuous rigid frame composite box girder bridges with corrugated steel webs under seismic conditions.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"84 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/3870669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To study the vehicle–bridge interaction (VBI) of highway bridges under seismic excitation, a vehicle–bridge couple analysis method based on Ansys is proposed. The 1/2 vehicle model and space beam element model were established to analyze the VBI response of Lanzhou Xiaoshagou bridge. The self-excited excitation of the system is represented by road surface irregularity randomness, while the external excitation is represented by an earthquake. The impact of seismic types, seismic direction, seismic intensity, vehicle speed, and road surface irregularity on the bridge vibration under the vehicle–bridge coupling during an earthquake is thoroughly analyzed. The results reveal that the type of earthquake significantly influences the dynamic response of the bridge, showing a minimum difference of 31.4%. The intensity of the earthquake is positively correlated with the dynamic response of the bridge. Longitudinal and vertical earthquakes have a more noticeable effect on the bridge’s vertical vibration compared to lateral earthquakes. The ratio of the bridge response under vertical or longitudinal seismic excitation to the response of lateral earthquakes ranges from 1.50 to 26.61. Vehicle speed, road irregularity grade, and randomness have a negligible impact on the dynamic response of vehicle–bridge interaction under an earthquake, accounting for less than 3%. These findings indicate that the analysis of earthquake-bridge vibration can simplify the VBI analysis for continuous rigid frame composite box girder bridges with corrugated steel webs under seismic conditions.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.