{"title":"Early adapting to trends: self-stabilizing information spread using passive communication","authors":"Amos Korman, Robin Vacus","doi":"10.1007/s00446-024-00462-8","DOIUrl":null,"url":null,"abstract":"<p>How to efficiently and reliably spread information in a system is one of the most fundamental problems in distributed computing. Recently, inspired by biological scenarios, several works focused on identifying the minimal communication resources necessary to spread information under faulty conditions. Here we study the self-stabilizing <i>bit-dissemination</i> problem, introduced by Boczkowski, Korman, and Natale in [SODA 2017]. The problem considers a fully-connected network of <i>n</i> <i>agents</i>, with a binary world of <i>opinions</i>, one of which is called <i>correct</i>. At any given time, each agent holds an opinion bit as its public output. The population contains a <i>source</i> agent which knows which opinion is correct. This agent adopts the correct opinion and remains with it throughout the execution. We consider the basic <span>\\(\\mathcal {PULL}\\)</span> model of communication, in which each agent observes relatively few randomly chosen agents in each round. The goal of the non-source agents is to quickly converge on the correct opinion, despite having an arbitrary initial configuration, i.e., in a self-stabilizing manner. Once the population converges on the correct opinion, it should remain with it forever. Motivated by biological scenarios in which animals observe and react to the behavior of others, we focus on the extremely constrained model of <i>passive communication</i>, which assumes that when observing another agent the only information that can be extracted is the opinion bit of that agent. We prove that this problem can be solved in a poly-logarithmic in <i>n</i> number of rounds with high probability, while sampling a logarithmic number of agents at each round. Previous works solved this problem faster and using fewer samples, but they did that by decoupling the messages sent by agents from their output opinion, and hence do not fit the framework of passive communication. Moreover, these works use complex recursive algorithms with refined clocks that are unlikely to be used by biological entities. In contrast, our proposed algorithm has a natural appeal as it is based on letting agents estimate the current tendency direction of the dynamics, and then adapt to the emerging trend.</p>","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"85 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00446-024-00462-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
How to efficiently and reliably spread information in a system is one of the most fundamental problems in distributed computing. Recently, inspired by biological scenarios, several works focused on identifying the minimal communication resources necessary to spread information under faulty conditions. Here we study the self-stabilizing bit-dissemination problem, introduced by Boczkowski, Korman, and Natale in [SODA 2017]. The problem considers a fully-connected network of nagents, with a binary world of opinions, one of which is called correct. At any given time, each agent holds an opinion bit as its public output. The population contains a source agent which knows which opinion is correct. This agent adopts the correct opinion and remains with it throughout the execution. We consider the basic \(\mathcal {PULL}\) model of communication, in which each agent observes relatively few randomly chosen agents in each round. The goal of the non-source agents is to quickly converge on the correct opinion, despite having an arbitrary initial configuration, i.e., in a self-stabilizing manner. Once the population converges on the correct opinion, it should remain with it forever. Motivated by biological scenarios in which animals observe and react to the behavior of others, we focus on the extremely constrained model of passive communication, which assumes that when observing another agent the only information that can be extracted is the opinion bit of that agent. We prove that this problem can be solved in a poly-logarithmic in n number of rounds with high probability, while sampling a logarithmic number of agents at each round. Previous works solved this problem faster and using fewer samples, but they did that by decoupling the messages sent by agents from their output opinion, and hence do not fit the framework of passive communication. Moreover, these works use complex recursive algorithms with refined clocks that are unlikely to be used by biological entities. In contrast, our proposed algorithm has a natural appeal as it is based on letting agents estimate the current tendency direction of the dynamics, and then adapt to the emerging trend.
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.