Modeling of 1.7-μm and 2.4-μm Dual-Wavelength Pumped 4.3-μm Dysprosium-Doped Chalcogenide Fiber Lasers

IF 2.2 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Quantum Electronics Pub Date : 2024-01-08 DOI:10.1109/JQE.2024.3350688
Yang Xiao;Jian Cui;Xusheng Xiao;Yantao Xu;Haitao Guo
{"title":"Modeling of 1.7-μm and 2.4-μm Dual-Wavelength Pumped 4.3-μm Dysprosium-Doped Chalcogenide Fiber Lasers","authors":"Yang Xiao;Jian Cui;Xusheng Xiao;Yantao Xu;Haitao Guo","doi":"10.1109/JQE.2024.3350688","DOIUrl":null,"url":null,"abstract":"A novel \n<inline-formula> <tex-math>$1.7 \\mu \\text{m}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>$2.4 \\mu \\text{m}$ </tex-math></inline-formula>\n dual-wavelength pumping scheme for a \n<inline-formula> <tex-math>$4.3 \\mu \\text{m}$ </tex-math></inline-formula>\n dysprosium (Dy3+)-doped chalcogenide fiber laser was theoretically demonstrated. It was attributed to the \n<inline-formula> <tex-math>$2.4 \\mu \\text{m}$ </tex-math></inline-formula>\n excited stated absorption (ESA, \n<inline-formula> <tex-math>$^{6}\\text{H}_{\\mathrm {13/2}} \\to ^{6}\\text{H}_{\\mathrm {9/2}},^{6}\\text{F}_{\\mathrm {11/2}}$ </tex-math></inline-formula>\n transition). Theoretically, when the two pumps were 5 W and 2 W, respectively, a laser power of 1.5 W with an remarkable efficiency of 30.2% was obtained from the home-made Dy3+:Ga0.8As34.2Sb5S60 glass fiber with a loss coefficient of 3 dB/m and a Dy3+ concentration of \n<inline-formula> <tex-math>$3.67\\times 10^{25}$ </tex-math></inline-formula>\n ions/m3. Results indicated that the dual-wavelength pumping scheme based on the gain fiber provides a potential way to \n<inline-formula> <tex-math>$4.3 \\mu \\text{m}$ </tex-math></inline-formula>\n dysprosium-doped chalcogenide fiber lasers.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10382555/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A novel $1.7 \mu \text{m}$ and $2.4 \mu \text{m}$ dual-wavelength pumping scheme for a $4.3 \mu \text{m}$ dysprosium (Dy3+)-doped chalcogenide fiber laser was theoretically demonstrated. It was attributed to the $2.4 \mu \text{m}$ excited stated absorption (ESA, $^{6}\text{H}_{\mathrm {13/2}} \to ^{6}\text{H}_{\mathrm {9/2}},^{6}\text{F}_{\mathrm {11/2}}$ transition). Theoretically, when the two pumps were 5 W and 2 W, respectively, a laser power of 1.5 W with an remarkable efficiency of 30.2% was obtained from the home-made Dy3+:Ga0.8As34.2Sb5S60 glass fiber with a loss coefficient of 3 dB/m and a Dy3+ concentration of $3.67\times 10^{25}$ ions/m3. Results indicated that the dual-wavelength pumping scheme based on the gain fiber provides a potential way to $4.3 \mu \text{m}$ dysprosium-doped chalcogenide fiber lasers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.7 μm 和 2.4 μm 双波长泵浦 4.3 μm 掺镝钙钛矿光纤激光器建模
为4.3 \mu \text{m}$掺杂镝(Dy3+)的掺钙光纤激光器设计的新型1.7 \mu \text{m}$和2.4 \mu \text{m}$双波长泵浦方案在理论上得到了证实。它归因于 2.4 \mu \text{m}$ 激发声明吸收(ESA,$^{6}\{H}_{\mathrm {13/2}}\到 ^{6}text\{H}_{\mathrm {9/2}}, ^{6}text\{F}_{\mathrm {11/2}}$ 转变)。理论上,当两个泵浦的功率分别为 5 W 和 2 W 时,自制的 Dy3+:Ga0.8As34.2Sb5S60 玻璃光纤的损耗系数为 3 dB/m,Dy3+ 浓度为 3.67/times 10^{25}$ 离子/m3,可获得 1.5 W 的激光功率和 30.2% 的出色效率。结果表明,基于增益光纤的双波长泵浦方案为 4.3 \mu \text{m}$掺镝的掺钙光纤激光器提供了一种潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
期刊最新文献
A Nanoplasmonic Directional Coupler Utilizing a Backed Conductor on Dielectric Substrate With Finite Width Intensity and Degree of Coherence of Vortex Beams in Atmospheric Turbulence Numerical Modeling for 250 nm DUV LEDs With Discrete p-type Functional Layers to Manage Both Carrier and Photon Transport C-Band Directly Modulated Lasers With Tunable Photon–Photon Resonance in InP Membrane High Precision and Fast Distributed Temperature Data Demodulation Algorithm of Optical Frequency Domain Reflectometer Based on LSTM-CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1