A Bionic Localization Memristive Circuit Based on Spatial Cognitive Mechanisms of Hippocampus and Entorhinal Cortex

Zihui Tang;Xiaoping Wang;Chao Yang;Zhanfei Chen;Zhigang Zeng
{"title":"A Bionic Localization Memristive Circuit Based on Spatial Cognitive Mechanisms of Hippocampus and Entorhinal Cortex","authors":"Zihui Tang;Xiaoping Wang;Chao Yang;Zhanfei Chen;Zhigang Zeng","doi":"10.1109/TBCAS.2024.3350135","DOIUrl":null,"url":null,"abstract":"In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a ‘one-hot’ code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10381810/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a bionic localization memristive circuit is proposed, which mainly consists of head direction cell module, grid cell module, place cell module and decoding module. This work modifies the two-dimensional Continuous Attractor Network (CAN) model of grid cells into two one-dimensional models in X and Y directions. The head direction cell module utilizes memristors to integrate angular velocity and represents the real orientation of an agent. The grid cell module uses memristors to sense linear velocity and orientation signals, which are both self-motion cues, and encodes the position in space by firing in a periodic mode. The place cell module receives the grid cell module's output and fires in a specific position. The decoding module decodes the angle or place information and transfers the neuron state to a ‘one-hot’ code. This proposed circuit completes the localizing task in space and realizes in-memory computing due to the use of memristors, which can shorten the execution time. The functions mentioned above are implemented in LTSPICE. The simulation results show that the proposed circuit can realize path integration and localization. Moreover, it is shown that the proposed circuit has good robustness and low area overhead. This work provides a possible application idea in a prospective robot platform to help the robot localize and build maps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于海马和大脑内皮层空间认知机制的仿生定位记忆电路
本文提出了一种仿生定位忆阻器电路,主要由头部方向单元模块、网格单元模块、位置单元模块和解码模块组成。这项工作将网格单元的二维连续吸引子网络(CAN)模型修改为 X 和 Y 方向的两个一维模型。头部方向单元模块利用忆阻器来整合角速度,并代表代理的真实方向。网格单元模块利用忆阻器感知线速度和方向信号,这两种信号都是自我运动线索,并通过周期性发射模式对空间位置进行编码。位置单元模块接收网格单元模块的输出,并在特定位置点火。解码模块对角度或位置信息进行解码,并将神经元状态转换为 "单击 "代码。该电路完成了空间定位任务,并通过使用忆阻器实现了内存计算,从而缩短了执行时间。上述功能在 LTSPICE 中实现。仿真结果表明,所提出的电路可以实现路径集成和定位。此外,仿真结果还表明,所提出的电路具有良好的鲁棒性和较低的面积开销。这项工作为前瞻性机器人平台提供了一种可能的应用思路,以帮助机器人定位和构建地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Integrated Dual-Mode Pulse and Continuous-Wave Electron Paramagnetic Resonance Spectrometers. NEXUS: A 28nm 3.3pJ/SOP 16-Core Spiking Neural Network with a Diamond Topology for Real-Time Data Processing. An Electrochemical CMOS Biosensor Array Using Phase-Only Modulation With 0.035% Phase Error And In-Pixel Averaging. GCOC: A Genome Classifier-On-Chip based on Similarity Search Content Addressable Memory. Low-Power and Low-Cost AI Processor with Distributed-Aggregated Classification Architecture for Wearable Epilepsy Seizure Detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1