High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau

IF 3 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL Progress in Physical Geography-Earth and Environment Pub Date : 2024-02-23 DOI:10.1177/03091333241236394
Zixuan Chen, Qiong Li, Pushuang Li, Jiantao Zhou, Yating Su, Weiming Liu, Yuanlong Luo, Chen Wen, Xuechao Xu, Shengli Yang
{"title":"High-resolution climate change during the Marine Isotope Stage 3 revealed by Zhouqu loess in the eastern margin of the Tibetan Plateau","authors":"Zixuan Chen, Qiong Li, Pushuang Li, Jiantao Zhou, Yating Su, Weiming Liu, Yuanlong Luo, Chen Wen, Xuechao Xu, Shengli Yang","doi":"10.1177/03091333241236394","DOIUrl":null,"url":null,"abstract":"A consensus has not yet been reached on effects of climate change and driving mechanisms between the Tibetan Plateau (TP) and adjacent monsoonal areas during the Marine Isotope Stage 3 (MIS 3). Loess–paleosol sequences from the TP provide valuable information about the MIS 3 environmental history. Detailed color index and a diffuse reflectance spectral (DRS) analysis of Zhouqu (ZQ) loess from the Western Qinling Mountains were conducted to investigate climate change on the eastern margin of the TP during the MIS 3. Our results show that the variations in color index and iron oxide content in ZQ loess are mainly caused by the pedogenesis and climate conditions. The lightness (L*) value and hematite (Hm) content were used to reconstruct the precipitation history and temperature changes, respectively. The reconstructed records revealed that climate change during the MIS 3 was characterized by high frequency and large amplitude, with millennial-scale changes superimposed on orbital-scale changes. Warm–humid climate occurred in the late MIS 3, while the early climate of MIS 3 was relatively cold–dry. The Indian summer monsoon (ISM) and temperature variations during the MIS 3 mainly occurred due to obliquity and precession. The North Atlantic cooling led to the southward movement of the Intertropical Convergence Zone, and the downstream cooling of the atmosphere by the westerly jet could result in events on a millennial-scale in the eastern margin of the TP. The interhemispheric forcing may play an important role in driving the strong summer monsoon in the late MIS 3.","PeriodicalId":49659,"journal":{"name":"Progress in Physical Geography-Earth and Environment","volume":"15 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Physical Geography-Earth and Environment","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1177/03091333241236394","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A consensus has not yet been reached on effects of climate change and driving mechanisms between the Tibetan Plateau (TP) and adjacent monsoonal areas during the Marine Isotope Stage 3 (MIS 3). Loess–paleosol sequences from the TP provide valuable information about the MIS 3 environmental history. Detailed color index and a diffuse reflectance spectral (DRS) analysis of Zhouqu (ZQ) loess from the Western Qinling Mountains were conducted to investigate climate change on the eastern margin of the TP during the MIS 3. Our results show that the variations in color index and iron oxide content in ZQ loess are mainly caused by the pedogenesis and climate conditions. The lightness (L*) value and hematite (Hm) content were used to reconstruct the precipitation history and temperature changes, respectively. The reconstructed records revealed that climate change during the MIS 3 was characterized by high frequency and large amplitude, with millennial-scale changes superimposed on orbital-scale changes. Warm–humid climate occurred in the late MIS 3, while the early climate of MIS 3 was relatively cold–dry. The Indian summer monsoon (ISM) and temperature variations during the MIS 3 mainly occurred due to obliquity and precession. The North Atlantic cooling led to the southward movement of the Intertropical Convergence Zone, and the downstream cooling of the atmosphere by the westerly jet could result in events on a millennial-scale in the eastern margin of the TP. The interhemispheric forcing may play an important role in driving the strong summer monsoon in the late MIS 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青藏高原东缘舟曲黄土揭示的海洋同位素第三阶段高分辨率气候变化
关于青藏高原(TP)和邻近季风区在海洋同位素第三阶段(MIS 3)期间气候变化的影响和驱动机制尚未达成共识。青藏高原的黄土-页岩沉积序列提供了有关 MIS 3 环境历史的宝贵信息。我们对西秦岭舟曲黄土进行了详细的颜色指数和漫反射光谱分析,以研究MIS 3期间TP东缘的气候变化。结果表明,舟曲黄土颜色指数和氧化铁含量的变化主要是由成土机制和气候条件引起的。利用光度(L*)值和赤铁矿(Hm)含量分别重建了降水历史和温度变化。重建的记录显示,MIS 3 期间的气候变化具有高频率、大振幅的特点,千年尺度的变化叠加在轨道尺度的变化之上。MIS 3晚期气候温暖湿润,而MIS 3早期气候相对寒冷干燥。印度夏季季风(ISM)和温度的变化主要发生在 MIS 3 期间,是由偏斜和前向引起的。北大西洋的冷却导致热带辐合带南移,西风喷流对大气的下游冷却可能导致热带辐合带东缘发生千年尺度的事件。在 MIS 3 晚期,半球间强迫可能在推动夏季季风强劲方面发挥了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
5.10%
发文量
53
审稿时长
>12 weeks
期刊介绍: Progress in Physical Geography is a peer-reviewed, international journal, encompassing an interdisciplinary approach incorporating the latest developments and debates within Physical Geography and interrelated fields across the Earth, Biological and Ecological System Sciences.
期刊最新文献
A review of flash flood hazards influenced by various solid material sources in mountain environment An excess-work approach to assessing channel instability potential within urban streams of Chicago, Illinois: Relative importance of spatial variability in hydraulic conditions and stormwater mitigation Long-term ecological studies on the oxbow ecosystems development and fire history in the Drava river valley (Central Europe): Implications for ecological restoration Fluvial encounters: Experimenting with a ‘River’s voice’ amidst light-based datafication Identification, computation, and mapping of anthropogenic landforms in urban areas: Case studies in the historical centre of Genoa, Italy (UNESCO World Heritage)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1