Eugenol derivatives containing 1,2,3-triazole-chalcone hybrids for shikimate kinase inhibition

IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Saudi Chemical Society Pub Date : 2024-03-01 DOI:10.1016/j.jscs.2024.101826
Bayu Ardiansah , Ahmad Farhan , Amalia Firdaus , Titin Ariyani , Mochammad Arfin Fardiansyah Nasution , Arif Fadlan , Antonius Herry Cahyana , Erwahyuni Endang Prabandari , J. Carlos Menéndez
{"title":"Eugenol derivatives containing 1,2,3-triazole-chalcone hybrids for shikimate kinase inhibition","authors":"Bayu Ardiansah ,&nbsp;Ahmad Farhan ,&nbsp;Amalia Firdaus ,&nbsp;Titin Ariyani ,&nbsp;Mochammad Arfin Fardiansyah Nasution ,&nbsp;Arif Fadlan ,&nbsp;Antonius Herry Cahyana ,&nbsp;Erwahyuni Endang Prabandari ,&nbsp;J. Carlos Menéndez","doi":"10.1016/j.jscs.2024.101826","DOIUrl":null,"url":null,"abstract":"<div><p>Eugenol, a primary component of clove oil, is a compound of considerable interest in medicinal chemistry due to its demonstrated potential as an effective agent in various therapeutic applications. In this study, a series of eugenol derivatives were designed and synthesized based on the hybridization of eugenol with 1,2,3-triazole and chalcone moieties. Compound <strong>5j</strong> and <strong>5</strong><strong>k</strong> were denoted as lead structures against <em>Mycobacterium tuberculosis</em> Shikimate Kinase (<em>Mt</em>SK). Moreover, the docking studies indicated that both the eugenol and triazole fragments in compound <strong>5j</strong> and <strong>5</strong><strong>k</strong> played a pivotal role in the inhibition activity of <em>Mt</em>SK, owing to their binding interactions with Arg58, Pro118, and Arg136 residues. Furthermore, in silico drug-likeness prediction analysis suggested that the majority of the synthesized compounds exhibit good oral bioavailability based on their molecular properties and Lipinski’s Rule of Five predictions.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 2","pages":"Article 101826"},"PeriodicalIF":5.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000218/pdfft?md5=e3c604ec17b904fd5c8bd92b0543736f&pid=1-s2.0-S1319610324000218-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000218","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Eugenol, a primary component of clove oil, is a compound of considerable interest in medicinal chemistry due to its demonstrated potential as an effective agent in various therapeutic applications. In this study, a series of eugenol derivatives were designed and synthesized based on the hybridization of eugenol with 1,2,3-triazole and chalcone moieties. Compound 5j and 5k were denoted as lead structures against Mycobacterium tuberculosis Shikimate Kinase (MtSK). Moreover, the docking studies indicated that both the eugenol and triazole fragments in compound 5j and 5k played a pivotal role in the inhibition activity of MtSK, owing to their binding interactions with Arg58, Pro118, and Arg136 residues. Furthermore, in silico drug-likeness prediction analysis suggested that the majority of the synthesized compounds exhibit good oral bioavailability based on their molecular properties and Lipinski’s Rule of Five predictions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于抑制莽草酸激酶的含有 1,2,3-三唑-查耳酮混合物的丁香酚衍生物
丁香酚是丁香油的一种主要成分,由于其在各种治疗应用中作为有效药剂的潜力,丁香酚在药物化学中是一种颇受关注的化合物。本研究根据丁香酚与 1,2,3-三唑和查耳酮分子的杂化,设计并合成了一系列丁香酚衍生物。化合物 5j 和 5k 被列为抗结核分枝杆菌莽草酸激酶(MtSK)的先导结构。此外,对接研究表明,化合物 5j 和 5k 中的丁香酚和三唑片段由于与 Arg58、Pro118 和 Arg136 残基的结合相互作用,在 MtSK 的抑制活性中起着关键作用。此外,硅学药物相似性预测分析表明,根据化合物的分子特性和利宾斯基五则预测,大多数合成化合物具有良好的口服生物利用度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Saudi Chemical Society
Journal of Saudi Chemical Society CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
8.90
自引率
1.80%
发文量
120
审稿时长
38 days
期刊介绍: Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to: •Inorganic chemistry •Physical chemistry •Organic chemistry •Analytical chemistry Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.
期刊最新文献
Ultrasound probe-assisted fabrication of 2,3-disubstituted quinazoline-4(3H)-one framework in the existence of SiO2-decorated nano-scale TiO2 composite and investigating their antibacterial attributes via molecular docking simulations Enhanced antibacterial testing and latent fingerprint detection using dichlorofluorescein-doped carbon dots Development and assessment of vanadium-based metal–organic frameworks for the effective elimination of hazardous pesticides from aqueous solutions: Mechanism of uptake, adsorption capacities, rate of uptake, and enhancement via the Box-Behnken design Novel and reusable magnetic MOF nanocomposite coupled ionic liquid-promoted efficient chemical fixation of CO2 into α-alkylidene cyclic carbonates Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1